r UM2576
’l life.augmented

User manual

STM32CubelDE ST-LINK GDB server

Introduction

The STM32CubelDE ST-LINK GDB server, also referred to as the GDB server, is a command-line application that runs on a PC
connected to the Arm® Cortex®-M target via the ST-LINK JTAG probe.

At start-up, the ST-LINK GDB server connects to the STM32 Arm® Cortex®-M target using the ST-LINK JTAG. After establishing
the target-side communication, it waits for the client to connect to its TCP-listen socket. Once the client is connected to the
TCP-listen socket, the ST-LINK GDB server processes the Remote Serial Protocol (RSP) messages sent by the client, performs
the appropriate target-side actions, and sends RSP replies back to the client.

Figure 1 shows a typical debug session using the ST-LINK GDB server to debug an Arm® Cortex®-M target using
STMicroelectronic ST-LINK probe.

Figure 1. Overview of a debug setup

ST-LINK GDB server USB

<:> ST-LINK JTAG probe

Running on local PC

.TCP socket JTAG cable
interface
GDB client
STM32
Running on device

local or remote PC

The figure shows how the GDB client connects to the ST-LINK GDB server via a TCP-socket interface in order to debug the
Arm® Cortex®-M target connected via the ST-LINK JTAG.

-
sTm32 N
CubelDE

UM2576 - Rev 4 - July 2021 www.st.com

For further information contact your local STMicroelectronics sales office.

https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576

m UM2576

GDB server usage

1 GDB server usage

The STM32CubelDE ST-LINK GDB server is a command-line application, which can be started by

. entering a set of command-line options

. instructing the GDB server to load the options from a configuration file

If no options are specified, the GDB server starts up with pre-configured default options. The start-up options and
the default values corresponding to each of them are listed in Section 1.1 GDB server start-up options.

The STM32CubelDE ST-LINK GDB server uses STM32CubeProgrammer (STM32CubeProg) to flash the device
that shall be debugged. The STM32CubeProgrammer software is automatically used by the GDB server when a
load command is issued by gdb.

Note: For cases where advanced device control is needed such as Flash erase or setting of Option Bytes,
STM32CubeProgrammer (STM32CubeProg) can be used. It is included in STM32CubelDE and can be also
downloaded independently from the STMicroelectronics website at www.st.com.

STM32CubelDE supports STM32 32-bit products based on the Arm® Cortex® processor.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

1.1 GDB server start-up options
The GDB server is started up with the following command:
ST-LINK gdbserver.exe [options]

Most options are available in a short and long form. The set of options, which the GDB server supports, are
described below with default modes and configurations in bold:

. -h, --help
Causes the ST-LINK gdbserver to display usage information.
. --halt

Halts all cores during reset.
[Use this option with multi-core devices to halt all.]
. -c <config file>, ——-config-file <config file>

Instructs the GDB server to read the options from the configuration file. A sample configuration file
illustrating the syntax is provided in Appendix B.

. -f <log file>, --log-file <log file>
Specifies the name of the log file. The default name is debug_log. txt.
. -1 <log level>, --log-level <log level>

Specifies the logging level. The logging level is between 0 and 31. Specifying a logging level of 0 turns the
logging off, whereas specifying a logging level of 31 enables the full logging. The default logging level is 31.
The logging level can be set as per the following list:

— =0: Disables logging.
— 21: Enables the logging of error messages.
— 2 2: Adds warning messages.
— 24: Adds communication-specific messages.
— > 8: Adds all information messages.
— 2 16: Adds all HW-specific messages.
Hence, if the options -f and -1 are not specified, the server starts up with a default logging level of 31 (full
logging) and the default log file is debug log. txt.
. -p <port number>, -—-port-number <port number>

Specifies the TCP port number at which the server listens for client connection. The default port number at
which the server listens is 61234.

. -v, ——verbose

Specifying -v in the command line enables the verbose mode; which, in addition, also prints on the standard
output the debug log of the server. By default, the verbose mode is disabled.

UM2576 - Rev 4 page 2/15

https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576
https://www.st.com
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576

m UM2576

GDB server start-up options

. -r <refresh delay>, —-refresh-delay <refresh delay>

Specifies the interval, in seconds, at which the hardware status is updated in the debug log file. Note that
updating the status at very small intervals bloats the debug log file. The default status refresh delay is
5 seconds.

. -s, —-verify
Turns on the verification of the Flash download.
. -e, ——persistant

Specifying the option -e starts the server in persistent mode. By default, the persistent mode is disabled,
meaning that the server starts in non-persistent mode.

. -d, ——swd
Enables the Serial Wire Debug (SWD) mode. Specifies that SWD is used instead of JTAG.
[Use this option for SWV.]

. -z <port number>, ——-swo-port <port number>

Specifies the TCP port number at which the server outputs raw SWO data.
[Use this option for SWV.]
. -a <cpu clock>, ——cpu-clock <cpu clock>
Specifies the clock speed of the CPU in Hz.
[Use this option for SWV.]
. -b <SWO CLOCKDIV>, --swo-clock-div <SWO CLOCKDIV>
Specifies the SWO clock divider. This operates on the CPU clock speed given by the —a option.
[Use this option for SWV.]
Use the -z, —a, and —b options together to specify the speed of the SWO. For example, if the core runs at

168 MHz and the target SWO at 1 MHz, configure these options as follows: -z 61235 -a 168000000 -b
168. For a core running at 72 MHz and SWO at 125 kHz, use -z 61235 —-a 72000000 -b 576.

. -k, -—initialize-reset
Initializes the device while under reset condition.

. -qg, ——debuggers
List connected debuggers, ST-LINK serial numbers.

. -1 <ST-LINK S/N>, --serial-number <ST-LINK S/N>
Specifies the ST-LINK serial numbers the server shall connect to.

. --frequency <max freqg kHz>
Specifies the ST-LINK communication frequency in kHz, such as 5, 25, 100, 240, 950, 1800, 4000, 8000,
24000 kHz.

. -m <apID>, -—apid <apID>

Defines the aplID to debug.

[Use this option for muti-core.]
. -g, ——attach

Attaches to the running target.

Attach is aimed to be used to connect to a running program in the device without doing a reset or
downloading a new program.

[sTM32 Programmer CLI is always started with ‘mode=UR reset=hwRst” so that a device reset is done
when loading a new program independent of this option. This guarantees that the flashing of the device is
made correctly.]

. -t, ——shared
Allows two or more programs to connect to the same device simultaneously using one single ST-LINK
probe.
[Use this option for the ST-LINK server.]

. --erase-all

Erases all the memories.
. --memory-map <device id>

Shows the memory map for the given device identifier, such as 0x410.

UM2576 - Rev 4 page 3/15

m UM2576

GDB server modes of operation

. --ext-memory-loaders
Provides the list of the available external memory loaders.
. -el <file path>, --extload <file path>
Selects a custom external memory-loader.
. --external-init

Runs Init () from external memory loader after reset to make external memory accessible without need for
application software to set up the access to memory-mapped external memory.

[This option requires that option ~el <file path>, --extload <file path>is used also.]

. -cp <path>, --stm32cubeprogrammer-path <path>
Path to the STM32CubeProgrammer (STM32CubeProg) installation.
. --pend-halt-timeout <Pending halt timeout>

Specifies the maximum time for ST-LINK GDB server to wait for the core to halt (default time is 2 seconds).

When using this option, the GDB client must also be started to use longer timeout values. For instance, use
a .gdbinit file containing the following two lines to get a 50-second timeout:

- set remotetimeout 50

- set tcp connect-timeout 50
. --temp-path <path>

Temporary files for starting a debug session are stored at the path provided.
. —-—preserve-temps

Temporary files are not removed.
. --licenses

Provides the list of the tools and licenses used.
. --, ——ignore-rest

Ignores the rest of the labeled arguments following this flag.
. --version

Displays version information and exits.

1.2 GDB server modes of operation
The server can be run either in persistent or non-persistent mode depending upon the configuration options. In
persistent mode, the server continues to run even after the client disconnects, and waits for new connections,
whereas in non-persistent mode the server exits when the client closes the connection. However, as an
exception, if the server encounters errors in the target communication, it closes all connections and shuts down,
regardless of the mode.

1.3 Starting the GDB server

The GDB server can be started in a command window in the following way:

1. cd
C:\ST\STM32CubeIDE 1.0.0.19wl2patch\STM32CubeIDE\plugins\com.st.stm32cube.ide.mc
u.externaltools.stlink-gdb-server.win32 1.0.0.201903011553\tools\bin\ST-
LINK gdbserver

2. Start the GDB server using —cp with the path to STM32 Programmer CLI.exe
For instance: ST-LINK gdbserver.exe -d -v -cp
"C:\ST\STM32CubeIDE 1.0.0.19wl2patch\STM32CubeIDE\plugins\com.st.stm32cube.ide.m
cu.externaltools.cubeprogrammer.win32 1.0.0.201903011553\tools\bin"

3. Then, the GDB server connects to the STM32 device using the ST-LINK JTAG and waits for commands from
a GDB debug session.

UM2576 - Rev 4 page 4/15

https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576

m UM2576

Debugging with GDB

2 Debugging with GDB

This section describes a minimal set of GDB commands, which are needed to debug a program via a GDB client.
A full list of commands can be obtained by typing help at the GDB command prompt. Alternatively, the GDB user
manual is available in the STM32CubelDE information center.

The ST-LINK GDB server is tested against versions v7.0, and 8.1 of the GDB client.

2.1 Launching GDB

A command-line GDB client is started by the command
>arm-none-eabi-gdb <program.elf>

where <program.elf> is the program to be debugged.

2.2 Connecting to the server

The server can be started in either persistent or non-persistent mode:

. If the server is started in non-persistent mode, the client must connect to the server using the command
>target remote <ip-address>:<port-number>
When the client connects to the server in non-persistent mode using this command, the debug session
cannot be restarted without closing both client and server.

. If the server is started in persistent mode, the client must connect to the server using the command
>target extended-remote <ip-address>:<port-number>
When the client connects to the server in persistent mode using this command, the user has the facility to

restart the debug session without closing the server or client. In this mode of operation for client and server,
the debug session can be repeatedly restarted.

23 Loading the program on the target
The executable program is loaded on the target using the GDB command
>load <program.elf>

This command loads the program on the target. If the code segment of the program lies in the Flash ROM, then
the respective pages of the Flash are erased before the new code is written.

Note: The Flash programming (the code download into the Flash memory) is handled by the GDB server using
STM32CubeProgrammer (STM32CubeProg) and is transparent to the user.

231 Loading program to external memory

When a program must be loaded to an external memory, the option --extload <file path> must be used.
External memory loader files are delivered for most available STM32 Evaluation and Discovery boards containing
external memory. To list the available loader files, use the —-—ext-memory-loaders option.

The STM32CubeProgrammer software description user manual (UM2237) contains detailed information on how
to use external Flash loader programs and develop customized loaders for external memory. The user manual is
available from the STM32CubeProg webpage on www.st.com.

2.3.2 Memory read/write to external memory

To make external memory accessible for read and write by the debugger, use the —-—external-init option
together with external memory loader --extload <file path> option. When --external-init is used
the Init () function in the external memory loader is run by the ST-LINK GDB server after reset. This makes
external memory accessible without any need for application software to set up the device for external memory
access. The external memory must be memory mapped and directly accessed because normal memory read/
write is used by gdb.

Note: When using the --external-init option with the ST-LINK GDB server, the stack required by the Tnit ()
function is limited to 1024 bytes of stack instead of 400 bytes in ST-LINK GDB server v5.4.0.

UM2576 - Rev 4 page 5/15

https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576
https://www.st.com/resource/en/user_manual/dm00403500.pdf
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576
https://www.st.com

m UM2576

Setting breakpoints

24 Setting breakpoints

Breakpoints are placed using the GDB break command
> break [LOCATION]

where, LOCATION is a line number, function name, or “*” followed by an address. If a line is specified, GDB
breaks at the start of the code for that line. If a function is specified, GDB breaks at the start of the code for that
function. If an address is specified, GDB breaks at the exact address.

The break command places a software breakpoint at the specified location. This is valid if the code segment
lies in RAM. However, if the code segment lies in the Flash ROM, then the hbreak command should be used
instead of the break command. The arguments for the hbreak command are the same as those of the break
command.

Note: The maximum number of hardware breakpoints that can be simultaneously placed depends on the debugged
STM32 device. Note that there is no such limit on software breakpoints.

25 Setting watch-points
Variable read, write, and access operations are tracked with the commands
>rwatch <variable-name>, which halts the program if the variable is read,
>watch <variable-name>, which halts the program if the variable is written to,
>awatch <variable-name>, which halts the program if an access to the variable occurs.

Note: The maximum number of watch-points that can be simultaneously placed depends on the hardware
configuration.

2.6 Running the program
Once the program is loaded, the debugger starts execution through the command
>continue

Note: There is no mechanism for specifying command-line parameters to the program.

The user can halt the program by pressing Ctr1-C while it is running. The user can step over a statement by
using the next command. The user can also step inside a function by using the step command.

2.7 Exiting a debug session
The user exits the debug session by issuing the GDB command quit.

2.8 Debugging on the target STM32 board

The ST-LINK GDB server supports the debug of STM32 Arm® Cortex®-M-based devices. Both debugging in

RAM and Flash are supported. Flash breakpoints are supported by the Arm® Cortex®-M hardware breakpoints.
Application code can be compiled to run from either the RAM or Flash. No special commands are needed to
distinguish between RAM- and Flash-mode codes as GDB handles this internally.

For the debug of code in RAM or Flash on an Arm® Cortex®-M microcontroller, the stack pointer (SP, R13) and

program counter (PC, R15) must be initialized correctly:

. If the code to be debugged is located in the Flash, the SP is read from 0x0 and PC from 0x4.

. If the code to be debugged is located in the RAM, typically the start of the vector is the start of the RAM
area used for download. On most devices, this is 0x20000000. This means that the initial value of the stack
pointer (SP) can be read from 0x20000000 and the initial value of the PC can be read from 0x20000004.

Use the command

>monitor reset

after downloading the code in order to set the SP and PC correctly. STM32CubelDE issues this command
automatically after downloading the code to the target device.

UM2576 - Rev 4 page 6/15

https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576

‘7 UM2576

Monitor commands

2.9 Monitor commands

The GDB monitor commands are supported and implement target-specific features, especially for performing
Flash controller specific commands.

The following commands are the monitor commands supported for the ST-LINK GDB server:
. >monitor help

Print information about the supported monitor commands.
. >monitor reset

Reset the system by software writing in a register. This resets the core and peripherals. The whole system
can be reset if the reset pin of the target is asserted.

. >monitor reset core

Reset the core by software writing in a register (not possible on Cortex®-M0, Cortex®-M0+ and Cortex®-M33
cores). This only resets the core, not the peripherals nor the reset pin.

. >monitor reset hardware
Reset the hardware activated by the reset pin. The ST-LINK reset line is activated and deactivated with a
pulse.

. >monitor flash mass_erase

Used to erase all the pages of the Flash device. Care needs to be taken when using this command since it
causes all data stored in the Flash to be lost.

. >monitor ReadAP <register index>
Read CoreSight AP register.

The following commands are not yet supported and always return OK:

N >monitor ReadDP <register index>
Read CoreSight DP register.

. >monitor WriteAP <register index> <data32>
Write CoreSight AP register.

. >monitor WriteDP <register index> <data32>

Write CoreSight DP register.

UM2576 - Rev 4 page 7/15

‘7 UM2576

Troubleshooting

3 Troubleshooting

In case the server hangs or fails to start up, follow these steps:

Shutdown the GDB server and any client attached to the server.

Power off the target board.

Disconnect the ST-LINK JTAG USB cable.

Re-connect the ST-LINK JTAG USB cable.

Power on the target board.

Check the debug configuration settings, such as the SWD/JTAG interface
7. Start the GDB server, preferably using a different port number.

A good practice is to try the debug of another project to eliminate the possibility of a project-specific problem with
the project configuration or start-up code.

We also recommend to try and debug with another USB cable, ST-LINK or STM32 hardware to exclude hardware
failures as the reason for the debug problems.

It is also advised to try and connect to the target using some other tool from STMicroelectronics, such as the
STM32CubeProgrammer (STM32CubeProg). If STM32CubeProgrammer can connect to the target, try to:

1. Erase the Flash with STM32CubeProgrammer.

Program a new program with STM32CubeProgrammer.

If the programming is successful, erase the Flash again with STM32CubeProgrammer.
Disconnect STM32CubeProgrammer from the target.

Try and debug the program using ST-LINK gdbserver.

AR e

o~ oeN

UM2576 - Rev 4 page 8/15

https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2576

UM2576

Return/error code information

0

1

© 0o N O

1
12
13
14

16

17

18
255

UM2576 - Rev 4 page 9/15

Appendix A Return/error code information

Table 1. ST-LINK GDB server return/error codes

TARGET_SUCCESS
TARGET_CONNECT_ERR

TARGET DLL_ERR
TARGET _USB_COMM_ERR
TARGET_NO_DEVICE

TARGET_UNKNOWN_MCU_TARGET

TARGET_FIRMWARE_OLD
TARGET RESET_ERR

TARGET _HELD_UNDER_RESET
TARGET _NOT_HALTED
TARGET _CMD_ERR
TARGET_APP_RESET_ERR
TARGET_VERSION_ERR
TARGET_GET_STATUS_ERR
TARGET_FORCE_HALT_ERR

TARGET_STLINK_SELECT_REQ

TARGET_STLINK_SERIAL_NOT_FOUND

TARGET_DEVICE_UNKNOWN_VENDOR
TARGET_UNKNOWN_ERR

OK.

Port is in use, something is already connected to the
board, such as STM32CubeProgrammer.

No ST-LINK connected.
USB communication error.
ST-LINK is connected but no board is connected

For instance, not using option —d when only SWD pins
are connected to the HW.

Old ST-LINK_firmware.

Reset error.

Reset button on board pressed.
Target could not be halted.
Command error.

Application reset error.

Version error.

Get status error.

Force halt error.

Several boards are connected. Need to specify —
i <ST-LINK S/N>.

The ST-LINK serial number cannot be found when using
the —1 option.

The vendor information cannot be verified.

Unknown error.

‘7 UM2576

Configuration file format

Appendix B Configuration file format

This appendix describes the configuration file format for starting the ST-LINK GDB server from a configuration file.
The configuration file format is briefly depicted by the following rules:

. Each line starting with a # is treated as a comment.
. Each configuration option (refer to Section 1.1 GDB server start-up options) is specified in a single line.

A sample configuration file is shown below:

A A R
Sample Configuration File
A A R

FHHH A S E A A A R R R
-e : Enables persistent mode
FHHH AR E A A A R R

—-e

T i
-f <Log-File> : Name of log file.
T i
-f debug log v0.txt

T i
-1 <Log-Level> : Logging level between 0 & 31

E R
-1 31

S i

-p <Port-Number> : TCP-Listen Port-Number.
FHAH AR E A A R R S
-p 61234

FhAfH AR A AR A A A A
-v : Enables verbose mode
FhAfH AR A A A A A A A A

-V

FHAH AR E A A A R R R

-r <refresh-delay-sec> : Maximum Delay in status refresh

FHAH AR E AR A A R R

-r 1

FHHH A E A AR A R R R

-cp <path> : Path to STM32CubeProgrammer

FHHH AR AR A A A R R R

—cp C:\ST\STM32CubeIDE 1.7.0.21w21\STM32CubelIDE\plugins\
com.st.stm32cube.ide.mcu.externaltools.cubeprogrammer.win32 2.0.0.202105061353\
tools\bin

UM2576 - Rev 4 page 10/15

m UM2576

Revision history

Table 2. Document revision history

18-Apr-2019 1 Initial release.
11-Oct-2019 2 Updated Section 1.1 GDB server start-up options with more options.
Updated Section 1.1 GDB server start-up options with some new options.

21-Feb-2020 3 Added Section 2.3.1 Loading program to external memory and Section 2.3.2
Memory read/write to external memory.

Updated Section 2.9 with new monitor reset commands and

5-Jul-2021 4 Section Appendix B with —cp <path> option.

UM2576 - Rev 4 page 11/15

‘7 UM2576

Contents
Contents

1 GDB SEIVEI USAQE. . ..ttt ttttttttttsssaaas s s aansnnannnnnsnnssnsassessssssssnnnnnnns 2

1.1 GDB server start-up Options e 2

1.2 GDB server modes of operation. e 4

1.3 Starting the GDB Server. 4

2 Debugging With GDBottt it ie it ieaas s eanasrnnnnasannnnnns 5

21 Launching GDB 5

2.2 Connecting to the server 5

2.3 Loading the programonthetarget 5

2.31 Loading program to external memory 5

2.3.2 Memory read/write to external memory 5

2.4 Setting breakpoints 6

25 Setting watCh-points e 6

2.6 Running the program 6

2.7 EXiting @ debug SeSsioNn e 6

2.8 Debugging on the target STM32 board i 6

29 MoNItOr COMMANGS o 7

3 Troubleshooting i it ia e ran s na s 8

Appendix A Return/error code information.......... i i i, 9

Appendix B Configurationfileformat............. ... i i 10

ReVISiON NiStOry i i i ettt ettt aasnan s eansnan nanrnanenanns 1

List of tables ... i i ittt et tes s eaa s taa aaa aaa s 13

List Of figUIres. . ..o i 14

UM2576 - Rev 4 page 12/15

m UM2576

List of tables
List of tables
Table 1. ST-LINK GDB server return/error COAES o v i i e e e e e e e e e e e e e 9
Table 2. Document revision history 11

UM2576 - Rev 4 page 13/15

m UM2576

List of figures

List of figures

Figure 1. Overview of adebug setup. 1

UM2576 - Rev 4 page 14/15

‘7 UM2576

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics — All rights reserved

UM2576 - Rev 4 page 15/15

http://www.st.com/trademarks

	Introduction
	1 GDB server usage
	1.1 GDB server start-up options
	1.2 GDB server modes of operation
	1.3 Starting the GDB server

	2 Debugging with GDB
	2.1 Launching GDB
	2.2 Connecting to the server
	2.3 Loading the program on the target
	2.3.1 Loading program to external memory
	2.3.2 Memory read/write to external memory

	2.4 Setting breakpoints
	2.5 Setting watch-points
	2.6 Running the program
	2.7 Exiting a debug session
	2.8 Debugging on the target STM32 board
	2.9 Monitor commands

	3 Troubleshooting
	Appendix A Return/error code information
	Appendix B Configuration file format
	Revision history
	Contents
	List of tables
	List of figures

