m AN5394
life.augmented

Application note

Getting started with projects based on the STM32L5 Series in STM32CubelDE

Introduction

This application note describes how to get started with projects based on STM32L5 Series microcontrollers in
STMicroelectronics STM32CubelDE integrated development environment.

-
sTM32 N
CubelDE

AN5394 - Rev 3 - July 2020 www.st.com

For further information contact your local STMicroelectronics sales office.

https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394

m AN5394

General information

1 General information

STM32CubelDE supports STM32 32-bit products based on the Arm® Cortex® processor.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm
1.1 Prerequisites

The following tools are prerequisites for understanding the tutorial in this document and developing an application
based on the STM32L5 Series with Arm® TrustZone® enabled:

. STM32CubelDE 1.2.0

. STM32CubeProgrammer (STM32CubeProg) 2.3.0: configuration of Option Bytes

. STM32Cube_FW_L5 V1.0.0: STM32CubelL5 firmware with example project, and HAL and CMSIS drivers

Users are advised to keep updated with the documentation evolution of the STM32L5 Series at www.st.com/en/
microcontrollers-microprocessors/stm3215-series.

1.2 The use cases in this document

In the STM32CubelDE context, users have a number of different ways to explore and get started with the
development of projects based on the STM32L5 Series:

. Import an STM32CubelDE project from the STM32CubelL5 MCU Package to learn by using a working
example

. Create an STM32CubeMX project using the STM32CubeMX tool integrated inside STM32CubelDE, or the
stand-alone STM32CubeMX tool

. Create an empty project in STM32CubelDE and write their own code
. Create an empty project in STM32CubelDE and copy resources from the example project template available
in the STM32CubelL5 MCU Package

The following approach is recommended to get familiar and successfully started with a project development
based on the STM32L5 Series:

1. Import a TrustZone® example project, which is part of the STM32CubelL5 MCU Package. This is the
quickest way to understand the CMSIS and HAL drivers provided for bootstrapping the STM32L5 device.

2. Create an empty project as the production project and copy the code from the STM32CubelL5 MCU
Package. In empty projects, users are in full control of the source code and configuration files, which are not
touched by STM32CubeMX. This gives users higher flexibility, but require a slightly steeper learning curve.

3. Create an STM32CubeMX project to use the graphical interface to configure the hardware and generate the
corresponding HAL drivers. This can be used as the production project or playground to explore and learn
more.

Some template projects are supplied in STM32CubelDE project format; these are template projects with and
without TrustZone® enabled. For example:
. Using TZEN = 1:
STM32Cube FW L5 V1.0.0\STM32Cube FW L5 V1.0.0\Projects\STM32L552E-EV\Templates\T
rustZoneEnabled\
. Using TZEN = 0:
STM32Cube FW L5 V1.0.0\STM32Cube FW L5 V1.0.0\Projects\STM32L552E-EV\Templates\T
rustzZoneDisabled\

This application note refers to the TrustZoneEnabled project template mentioned above, where TrustZone® is
enabled by Option Byte TZEN configured to 1.

The readme file for this project template describes how to configure the Option Bytes to match the code; It
provides a good template to learn some important configuration use cases.

After their first learning experience, users can choose between creating an empty project, start with an
STM32CubeMX-managed project for their own application development, or try both.

AN5394 - Rev 3 page 2/31

https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394
https://www.st.com/en/product/stm32cubel5?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394
https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series
https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394
https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series.html

m AN5394

Option Bytes

Firmware STM32Cube_FW_L5 contains many other example projects for different peripherals with
STM32CubelDE project files. These can be imported into STM32CubelDE and studied for learning how to use
STM32L5 peripherals.

1.3 Option Bytes

To learn more about the Option Bytes, refer to the the reference manual for microcontrollers in the STM32L5
Series (RM0438). For the specific example project template that are the basis of this application note, the correct
Option Bytes values are listed in the readme . txt file in the example project. STM32CubeProgrammer
(STM32CubeProg) must be used to program the Option Bytes.

1.4 Specific hierarchical project structure for secure and multi-core MCUs

Before importing or creating projects, it is important to consider some project structural concepts. After creating an
STM32L5 project, the project structure is automatically made hierarchical. The project structure for single-core
projects is flat. In a multi-core project, or a project with a TrustZone®-enabled MCU like in the STM32L5 Series,
the hierarchical project structure is used. When the user creates or imports a project, it consists of one root
project together with sub-projects referred to as MCU projects. The MCU projects are real CDT™ projects; They
can contain build and debug configurations while the root project cannot. The root project is a simple container
that allows sharing common code between the secure and non-secure MCU projects (in the case of the STM32L5
Series), as illustrated in Figure 1.

Figure 1. STM32L5 project with hierarchical project structure
& Project Explorer B% Y =0
v [T STM3215527E
v EE STM32L5527E NonSecure (in NonSecure):
> Wl Includes
> 2 Inc
> 2 Src
» 8 Startup
[STM32L552ZETXQ_FLASH.Id
[STM32L552ZETXQ_RAM.Id
v [E STM32L5527E_Secure (in Secure)
» i Includes
> & lnc
> 2 Src
» & Startup
[i STM32L552ZETXQ_FLASH.Id
[STM3215527ETXQ_RAM.Id

AN5394 - Rev 3 page 3/31

https://www.st.com/resource/en/reference_manual/dm00346336.pdf
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394
https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series.html

AN5394

Specific hierarchical project structure for secure and multi-core MCUs

3

If the setting has been changed or the project is otherwise not in a hierarchical structure, it can be changed as
shown in Figure 2.

Figure 2. Changing the visual representation between flat and hierarchical project structure

P

File Edit Source Refactor Mavigate Search Project Run Window Help

H-He B-R-ig-8-F-@-i-ni@idi®dy-iEnif
¢y Project Explorer i1 =0
% -
Projects Presentation » Flat
Top Level Elements | & Hierarchical

Select Working Set...

Deselect Working Set

Edit Active Working Set...
3 1 Window Working Set

o Filters and Customization...

% Link with Editor

In the file system, the two MCU projects are located inside the root project, which only contains one .project
file.

Figure 3. Root project with .project file

» STM32L5527E

D Name

NonSecure

Secure

E .project

AN5394 - Rev 3 page 4/31

m AN5394

Creating and importing projects

2 Creating and importing projects

This chapter describes how to import or create projects based on the STM32L5 Series. It starts by explaining how
to import the example project template available in the STM32CubelL5 MCU Package. After importing, building,
debugging and adding some function calls to non-secure callables, it shows how to create an own empty project,
copying the very same resources from the example project as a base template for the continued application
development.

Note: It is not recommended to continue the application development in the example project itself mainly because all
resources in this project are linked into the project:
. This means that the project is not self-contained, making version control more difficult
. Driver resources are shared with all other projects
. The Eclipse CDT™ indexer cannot always resolve linked resources and properly enable all code navigation
and visualization features

Creating a new empty project using the example project as a template is a better approach for continued
application development.

21 Importing the TrustZone® project template for STM32CubelDE

To import the STM32Cubel5 template project into STM32CubelDE, first go to [File]>[Import] and select Existing
Projects into Workspace as shown in Figure 4.

Figure 4. Import project template

2B import O X

Select Iﬁ

Create new projects from an archive file or directory.

Select an import wizard:

type filter text

v = General
{E Archive File
1= Existing Projects into Workspace
2 File System
& Import ach System Workbench for STM32 Project
El Import Atollic TrueSTUDIO Project
3 Preferences
3 Projects from Folder or Archive

» &C/C++

> = Install

» (= Remote Systems

» & Run/Debug

¢ = Team

AN5394 - Rev 3 page 5/31

https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series.html

AN5394
Importing the TrustZone® project template for STM32CubelDE

Attention:

AN5394 - Rev 3

Then select the appropriate project, which in Windows® by default is located in the User folder, such as $HOME\ S

TM32Cube\Repository\STM32Cube FW L5 VX.X.X\Projects\STM32L552E-EV\Templates\TrustZo
neEnabled\ (refer to Figure 5).

Figure 5. Selection of the STM32L552E-EV template project

[E import O X
Import Projects @
2
Select a directory to search for existing Eclipse projects.
(® Select root directory: | [SETRY \STM32Cube\Repository\STM32Cube_FW L5 V1.0.0\Projects\STM32L552E-EV\Templates\TrustZoneEnabled| v ‘ | Browse... ‘
O Select archive file: v Browse...
Projects:
TrustZoneEnabled (C:\Users\ \STM32Cube\Repository\STM32Cube_FW_L5_V1.0.0\Projects\STM32L552E-EV\Templates\TrustZoneEnabled\STM32CubelDE) Select All
TrustZoneEnabled_NonSecure (C:\Users\ \STM32Cube\Repository\STM32Cube_FW_L5_V1.0.0\Projects\STM32L552E-EV\Templates\TrustZoneEnabled\STM32CubelDE\NonSecure) Deselect Al
esele
TrustZoneEnabled_Secure (C:\Users\ \STM32Cube\Repository\STM32Cube_FW _L5_V1.0.0\Projects\STM32L552E-EV\Templates\TrustZoneEnabled\STM32Cubel DE\Secure) =
< >
Options
Search for nested projects
O Copy projects into workspace
[[] Close newly imported projects upon completion
[Hide projects that already exist in the workspace
Working sets
] Ad project to workingsets
Waorking sets; i Select...
® e o

When importing projects from STM32Cube MCU Packages, do not use the “Copy projects into workspace”
setting since it breaks the links to shared code such as HAL and CMSIS drivers in MCU Packages.

page 6/31

m AN5394

Exploring the example project

After selecting all three projects, click on [Finish] to import the template project.

Figure 6. Building the imported template project

m weorkspace_1.1.01 %39 - STMI2L552E-EY_Ternplates_TrustZone_Secure/Doc/readme.txt - STh3I2CubelDE - [m] x
Eile Edit Source Refactor Mavigate Search Project Bun Window Help
SR SRR VGG E - ® I RE TN e 8 [Quick pccess |2 5 | [
{5 Project Explorer 22 E® v =0] readmetet 52 = 0
v [STM32L552E-EY_Ternplates_TrustZane (in SThI2CubelDE) 28 - one for the non-secure application part (Project_ns}. ~
vm SThI2L5S2E-EV_Templates_TrustZone_MonSecure (in MonSecure) 29
30Please remember that on system with security enabled, the system always boots in secure and
> [Includes o o : : iy
Z1lthe secure applicatien is respensible for launching the nen-secure application.
~ = Doc 22
|5 readme.tet 32 This project mainly shows hew to switch frem secure application to non-secure application
» [Drivers Z4thanks to the system isolation perfermed to split the internal Flash and internal SRAM memories
> 2= Example 5 into two.halves: . .
[STM32L552ZETXO_FLASH.d 36 - the first half for the secure spplication and

37 - the second half for the non-secure application.

vm STMI2LE52E-EV_Ternplates_TrustZone_Secure (in Secure) I8
5 [l Includes 9 User Option Bytes configuration:
v (= Doc 4@ Please note the internal Flash is fully secure by default in TZEN=1 and User Option Bytes
5 readme.tet 41 SECUML_PSTRT/SECHML_PEND and SECHM2_PSTRT/SECWMZ_PEND should be set according to the application
> @& Drivers 42 configuration. Here the proper User Option Bytes setup in line with the project linker/scatter
43file is as follows:
» [Example e TZEN=1
| STM32L552ZETXO_FLASH.IA 45 DEANK=1
46 SECUM1_PSTRT=8x@ SECWM1_PEND=3x7F meaning all 128 pages of Bankl set as secure
47 SECWM2_PSTRT=@x1 SECWM2_PEND=0x@ meaning no page of Bank2 set as secure, hence Bank2 non-se
48

49Any attempt by the nen-secure application to access unauthorized code, memory or
50 peripheral generates a fault as demonstrated in non secure application by uncommenting some
51 code instructions in main.c.

52

53This project is targeted ta run on STM32LS dewice on boards from STHicroelectronics.

54

55 The reference template project configures the maximum system clock frequency at 11@Mhz in non-secl

56 application.

57

S&finote Care must be taken when using HAL_Delay(), this fumction preovides accurate delay (in millise

53 based on variable incremented in SysTick ISR, This implies that if HAL_Delay() is called fre

e a peripheral ISR process, then the SysTick interrupt must have higher priority (numerically

EL than the peripheral interrupt. Otherwise the caller ISR process will be blecked.

=] To change the 5SysTick interrupt priority you have to use HAL_WNVWIC_SetPriority() function.

63

&1 finote The application need to ensure that the SysTick time base is always set to 1 millisecond A
< >

1#] Proble.. 58 & Tasks & Consale Proper.. = O [@ Build Analyzer §§ = Static Stack Analyzer ¥ =08
e
Derrars, 1 waming, 0 athers
= Memary Regians mMemory Details
Description Resource
. . Region Start address End address Size
5 (& Wamings (1 item)
< >

< >
| Wiritable Insert 23:41:929 : : .

2.2 Exploring the example project

To get familiar with the example project, start by reading the project readme . txt file, which is linked to the Doc
folder.

221 Option Bytes
Set the Option Bytes according to the readme . txt file using STM32CubeProgrammer. For TrustZone®-enabled
projects, these settings are typically:
. TZEN = 1
. DBANK = 1
. SECWM1 PSTRT
secure

. SECWM2 PSTRT = 0Ox1 and SECWM2 PEND = 0x0, meaning that no page of Bank2 is set as secure,
hence making Bank2 non-secure

0x0 and SECWM1 PEND 0x7F, meaning that all 128 pages of Bank1 are set as

Important remarks:
. The sEcwMx Option Bytes are not visible until the TZEN is enabled and applied to target
. Always double-check the readme. txt file for correct Option Byte values

For more information, refer to the STM32CubeProgrammer user manual (UM2237).

AN5394 - Rev 3 page 7/31

https://www.st.com/resource/en/user_manual/dm00403500.pdf

‘,_l AN5394

Exploring the example project

222 Explore the linker script, memory partitioning, and SAU initialization

Each secure and non-secure project is built with its own linker script. This section presents some of the
differences between secure and non-secure linker scripts in the case of an STM32L552ZE microcontroller.

The Flash memory size of the STM32L552ZE is 512 Kbytes. With the Option Byte DBANK = 1, the Flash
memory is split up into two banks of 256 Kbytes each: one secure and one non-secure bank. Both banks are then
further split into regions for different types of toolchain outputs.

Secure Flash linker script:

MEMORY

{
RAM (xrw) : ORIGIN = 0x30000000, LENGTH = 96K
ROM (rx) : ORIGIN = 0x0C000000, LENGTH = 248K
ROM NSC (rx) : ORIGIN = 0xOCO3E000, LENGTH = 8K /* non-secure callable region */

}

Non-secure Flash linker script:

MEMORY

{
RAM (xrw) : ORIGIN = 0x20018000, LENGTH = 96K
ROM (rx) : ORIGIN = 0x8040000, LENGTH = 256K

}

In this example, the secure application starts at 0x0C00 0000 while the non-secure application starts at

0x0804 0000. In the secure linker script, an area of 8 Kbytes is set aside to contain the non-secure callables,
which is the glue that allows a non-secure application to call a defined set of functions in the secure area.

The linker script must be aligned with the memory partitioning header file. In this example, the memory
partitioning is defined in file partition stm321552xx.h. This header file contains the settings to configure the
SAU. A summary of one memory region is presented below:

/* Initialize and enable the SAU */
#define SAU INIT CTRL 1
#define SAU INIT CTRL ENABLE 1

/* <e>Initialize SAU Region 1 with memory attributes */

#define SAU INIT REGION1 1

#define SAU INIT START1 0x08040000 /* start address of SAU region 1 */
#define SAU INIT ENDI1 0x0807FFFF /* end address of SAU region 1 */
/* Region can be set as: 0 = non-secure, l= secure, non-secure callable */

#define SAU INIT NSC1 0

In total, eight memory regions can be configured in non-secure or secure/non-secure callable. The SAU is
configured as part of the boot sequence:
Reset Handler () — calls SystemInit () — calls the inlined Tz SAU Setup () function.

TZ_SAU_Setup () sets up the SAU.

Note: 1. The linker script and partition header file must be kept in coherence. If the linker script for the non-secure
project defines a certain Flash area to be used for non-secure use, then this area must also be described
properly in the partitioning header file. In the examples above, both the linker script and partitioning header
file point out 0x0804 0000 to be used as non-secure Flash area.

2. The CPU cannot access the non-secure memory before the SAU is initialized. Any attempt by the CPU or
the debugger to read the non-secure Flash results in RAZ (Read As Zero): Only zeros are returned. The
TZ SAU Setup () function must be executed to give access to the non-secure Flash.

3. The debugger is able to program the non-secure binary by configuring the SAU with a dummy
configuration. The debugger issues the reset command after Flash loading is complete to allow debug
using the SAU initialized with the user's SAU settings.

223 TrustZone®-related build settings

In a TrustZone®-enabled STM32L5 project, some additional build settings are configured. The user is advised not
to change these settings in the typical use case.

AN5394 - Rev 3 page 8/31

https://www.st.com/en/product/stm32l552ze?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394

AN5394

Exploring the example project

In the secure project, the compiler is called with the -mcmse attribute.

Figure 7. STM32L5 secure project: compiler call

m Properties for STR32L552E-EY_Termplates_TrustZone_Secure

| type filker text Settings

GvDvw
» Resource
v C/C++ Build
Build Wariables Configuration: |DEbU9 [Active | V| | Manage Configurations... |
Environment
Logging
Settings & Toolchain Version &9 Tool Settings A Build Steps @’ Build Artifact Binary Parsers @ Error Parsers
» CfT++ General
ChA3IS-3WD Settings (B2 MCL Settings

Froject Matures (B MCU Post build outputs

Project References ~ B3 MCU GCC Assembler
Run/Debug Settings 2 General

Other flags

88 32 5 &

@ Debugging
@ Preprocessor
@ Include paths
@ Miscellaneous
v B8 MCU GCC Compiler
@ General
@ Debugging
@ Preprocessor
@ Include paths
@ Optimization
(2 Warnings
(22 Miscellaneous
v B3 MCU GCC Linker Overbase ()
(2 General
(2 Libraries
(2 Miscellaneous

[Pasition Independent Code (-fPIC)

Enable stack usage analysis (-fstack-usage)

I Secure mode (-mcmse)

Apply and Closel | Cancel

AN5394 - Rev 3

page 9/31

m AN5394

Exploring the example project

In the secure project, the linker is configured to generate secure gateways for the non-secure callables.

Figure 8. STM32L5 secure project: linker configuration

E Properties for STR32L552E-EY_Ternplates_TrustZone_Secure

| type filter text Settings

> Resource
w C/C++ Build
Build Variables Configuration: |Debug [Active |
Ervironement
Logging
Settings
5 CfC++ General
CMEIS-5VD Settings @ MCU Settings Linker Script (-T) | $warkspace_loc/HProjMame
Project Matures (2 MCU Post build autputs
Project References v 8 MCU GCC Assembler Systemn calls
Run/Debug Settings 2 General

%: Debugging [Nadd symbol cross reference table to map file (W, --cref)
(22 Preprocessor

Discard unused sections (-W,--gc-sections)
22 Include paths [Juerb Wil b
@ Mizcellaneous erbose (-Wl,--verbose)
v 83 MCU GCC Campiler [Do not use standard start files (-nostartfiles)
@ General [Do not use default libraries (-nodefaultlibs)

@ Debugging Mo startuE or default ujs {-nostdlib)

(2 Preprocessor Generate secure gateways (-W,--cmse-implib -Wl,--out-implib=)

@ Include paths

2 Optimization

2 Warnings

(2 Miscellaneous
w B3 MCU GCC Linker

(2 General

(2 Libraries

(2 Miscellaneous

V| | Manage Configurations..,

Toclchain Wersion & Tool Settings & Build Steps Build Artifact Binary Parsers € Error Parsers

|M\nima| implementation {--sp

Generate map file (-W,-Map=)

@

|App|y and Closel | Cancel |

In the non-secure project, the linker is configured to link objects from the non-secure callable library that is built by
the secure application.

Figure 9. STM32L5 non-secure project: linker configuration

m Properties for STM3I2L552E-EY_Ternplates_TrustZone_MonSecure

type filter text Settings

A v T T
» Resource
w C/C++ Build
Build Varizbles Configuration: | Debug [Active | | e G miE.
Environment
Logaging
Settings # Toolchain Version & Tool Settings & Build Steps
» CfC++ General
CMSIIS-SVD Settings (B MCU Settings Other flags 80 85l 5
Project Natures @ MCU Post build outputs
Project References v 3 MCU GCC Assembler
Run/Debug Settings @ General
(£ Debugaing
(22 Preprocessar
(2 Include paths
(2 Miscellaneous
w B3 MCU GCC Cormpiler
(22 General
(2 Debugaing
(2 Preprocessar
(2 Include paths
(2 Optimization
(22 Warnings
. gﬁcﬁ'ggaﬂ:‘z:: Additional object files
(5 General
(5 Libraries
(5 Miscellaneous

Build Artifact Binary Parsers @ Error Parsers

L= =R

Apply and Clase| | Cancel

AN5394 - Rev 3

page 10/31

m AN5394

Exploring the example project

No change is needed in this example project. The non-secure project includes the secure library from the secure
project. Therefore, the secure project is scanned for changes and built before the non-secure project, if
necessary.

User checkpoint

At this point, it is recommended that users evaluate their proper understanding of the build mechanism before
proceeding further. Try building the non-secure project and thereby auto-trigger the build of the secure project.

224 RDP-level 0: loading and debugging both secure and non-secure projects
Loading the applications into the STM32L5 target can be done with any of the following tools:
. ST-LINK GDB server, by invoking a bundled STM32CubeProgrammer CLI version
. OpenOCD
. STM32CubeProgrammer stand-alone

This application note focuses on the use of the ST-LINK GDB server and OpenOCD. Unless noted otherwise, all
screenshots apply to both.

Note: It is not possible to create debug configurations for the root project but only for the two application projects:
secure and non-secure.

In the use case considered, it is assumed that the user has full access to all code and wants to debug the
complete application. The Option Byte RDP-level must remain set to 0 (0xAR).

To create a debug configuration, perform the following steps:
1. Select the secure project in [Project Explorer].
2. Right-click [Debug As...] and select [STM32 Cortex-M C/C++ Application].

AN5394 - Rev 3 page 11/31

AN5394

Exploring the example project

3

3. Move to the Debugger tab.
- To use the ST-LINK GDB server, keep all fields with their default values as shown in Figure 10.

Figure 10. Debugger tab with ST-LINK GDB server selection

[Edit Configuration O *

Edit launch configuration properties

Mame: | LS_SECU re

Main | %5 Debugger] =4 Startup| Ep Source| 1= Qommon|
GDB Connection Settings ~
(@) Autostart local GDE server Host name or IP address localhost

(O Connect to remote GDB server Port number 61234

Debug probe |ST-LINK (ST-LINK GDE server] -

GDB Server Command Line Options

Interface

® SWD O ITAG

[CIST-LINK S/ = | Scan
Frequency (kHz): ‘ Auto w |
Access port: ‘ 0 - Cortex-M33 ~ |

Reset behaviour

Type: Connect under reset Halt all cores

Serial Wire Viewer (SWV)

[JEnable

Clock Settings

Core Clock: | 160 IHz
SWAC Clock: 2000 S kHz

Part nurnber: | 61235
| Wait for sync packet

[][]

@ [ok]| cancat |

AN5394 - Rev 3 page 12/31

m AN5394

Exploring the example project

— To use OpenOCD, select the [Debug probe] as ST-Link (OpenOCD) and keep the default values as
shown in Figure 11.

Figure 11. Debugger tab with OpenOCD selection

[Edit Configuration O *

Edit launch configuration properties

Mame: | L3 _Secure

Main | %5 Debugger] =4 Startup| Ep Source| =] Qommon|

GDB Connection Settings

(@) Autostart local GDE server Host name or IP address | localhost
(O Connect to remote GDB server Port number 3333
Debug probe |ST-LINK (OpenOCD) P

GDB Server Command Line Options
OpenOCD Setup
OpenOCD Command:

| "§{stm32cubeide_openocd_pathf\openocd.exe” | | Browse...

OpenOCD Options: | |

Configuration Script

(®) Automated Generation () User Defined | Show generator options... |

Script File: | §{ProjDirPath\L3_Secure.cfg ‘ Browse... Reload

ST-LINK Client Setup

[Shared ST-LINK

| Reet | Awly |

@ [ok]| canca |

4. Move to the Startup tab. In the Load Image and Symbol table, only the secure binary is currently added. In
order to load and debug both the secure and non-secure binaries, the user must manually add the non-
secure binary to the load list.

AN5394 - Rev 3 page 13/31

AN5394

Exploring the example project

3

5. Click [Add...]
a. Project: Select the non-secure project
b. Build Configuration: Debug
c. Make sure that the Download and Load symbols checkboxes are checked

Figure 12. Add binary and symbol loads to non-secure project

[Addy/Edit item O e

Project: ‘STM32L552E*EV_Temp|ates_TrustZone_NonSecure b |
Build configuration: ‘ Debug PV |
Program path: ‘ Debug/STM32L552E-EV_Templates_TrustZone_NonSecure.elf |

File system...

Perform build
Download

Use download offset (hex) | |
Load symbols

Use symbol address (hex) ‘ |

oK | | Cancel |

AN5394 - Rev 3 page 14/31

m AN5394

Exploring the example project

After adding the non-secure el f file to be part of the list of e1 £ files to be loaded to the embedded target, the
load list looks as shown in Figure 13.

Figure 13. Startup configuration load list

[Edit Configuration O x

Edit launch configuration properties

MName: | STW3ZLE52E-EY_Ternplates_TrustZone_Secure Debug

ST H;?- Debugger [=3 Startupl E_/ Source| [C] Cormman

Initialization Cormmands

Load Image and Syrmbols

File Build Download Load syrmbals Add..,

Debug/STM3ZL552E-EY_Templates_Trustfone_MonSecure.el. J true (5? true J true -
B DebughSTM32L552E-EY_Ternplates_TrustZone_Secure.elf [ST... See Main tab ({? true Q& true e

Remuowve

Mawe up

feip

klowve down

Runtime Options

[Set prograrm counter at (hex)

[] Set breakpoint at:
Exception an divide by zero

[JException on unaligned access

[~ Halt on exception v

| Rewert | Apply |

@ | oK | | Cancel |

Attention: STM32L5 Series devices always boot in secure state when TrustZone® is enabled. The debugger sets the
Program Counter using information from the last image in the Load image and Symbols table. Make sure the
secure image is at the bottom of the load list.

Note: Before launching a debug session, STM32CubelDE checks if some code changes require a new build. The time
required for such a check grows with large code bases. Some users may want to disable this check to get a
faster debug launch procedure. In this case, they must also keep track of build changes and make sure to build
manually.

The debug configuration setup presented above guarantees that any change in the code since the last build
triggers a new build. Both images are downloaded and GDB loads symbols from both binaries in order to be able
to map instructions to C code.

Assuming that the STM32L5 device is connected and that Option Bytes are properly configured, click [OK] to
launch the first debug session.

AN5394 - Rev 3 page 15/31

m AN5394

Exploring the example project

The application halts at the first line in main () of the secure application.

Figure 14. Debugger halted on secure main function

m aeorkspace_1.1.0.1%w39 - STM3I2L552E-EY_Templates_TrustZone_Secure/ExamplefUser/main.c - STh32CubelDE - [m] x
File Edit Source Refactor Mavigate Search Project Run Window Help
AR ENETN- SR AR NI W R AN RV R RSl RS R TR TR A SRR AR N A [quick access | 9 | D[
#% Debug 22 [Project Explarer = B [maine 2 = O =V 32 %B &F IR gL % = g
SIRIB T et macro . e e~
v [IE STM32L552E-EY_Templates_TustZane_Secure D 41 /% Private variables ——---———- B Marme Type Value
v i STM32L552E-EV_Ternplates_TrustZone_Secur 42 /* Private function prototypes —-----------------mo--—momooo_
w f® Thread #1 [main] 1 [core: 0] (Suspended : 43 static void NonSecure_Indt(vodd);
= main() at main.c:54 G:c000d64 44 static void Systemlsolation Config(void);
= Reset Handler) at startup_stm321552¢ :z #* static vold SystemClock_Config{void]; provided as example if secur
o CH/STASTMIZCubelDE_11.0.19038/STM32Cu 475
o5 STLINK (ST-LINK GDB server) 45 * @brief Hain program
49 * {iretwal Hone
5@ *
51 int main(void)
52 {
53 /* Secure/Hon-secure Memory and Peripheral isolation configuration *
% 51 systemlsolatien Config();
55
56 /* Enable secureFault handler (HardFault is default) */
57 SCB-»SHCSR |= SCB_SHCSR_SECUREFALLTENA Msk;
S&
555 /% STHIZLSior **SECURE** HAL library initialization:
] - secure Systick timer is configured by default as source of ti
&L but user can eventually implement his proper time hase source
a2 purpose timer for example or other time source], keeping in m
63 Time base duration should be kept 1lms since PPP_TIMEOUT_VALLE
4 and handled in milliseconds basis.
&5 - Lew Level Initializatien
65 *
67 HAL_Init();
=
63 #* secure application may configure the System clock here */
7@ #* systemClock_Config(y; */
7L
7z
732 /* bdd your secure application code here prior to non-secure initizl
7 *f
75 R
< >
B Consale 37 17 Problems Executables G Debugger Console [Memory x }:ql B BF 2 |& @l =B~ =0
STM32L552E-EV Ternplates_TrustZone_Secure Debug [STM32 Cortex-M C/T+ + Application] ST-LINK (ST-LINK GDE server)
Legging Lewel i1 ~
Listen Port Mumber 1 A1234
Status Refresh Delay : 15s
VYerbose Mode : Disabled
SWD Debug : Enabled
Waiting for debugger comnection...
Debugger connected
v
< >
| writable | smartinsert | 54:7:2056 iSecure g g o

INmain.c:54 - SystemIsolation Config(): In this function, the secure side books memory blocks and
peripherals to be accessed by the non-secure side.

Use stepping to step-through the first lines in the secure application and learn how the device is configured to
make the jump from secure to non-secure context.

Inmain.c: There is a function call to NonSecure Init (). Step into this function as shown in Figure 15.

Figure 15. Initialization of the secure to non-secure jump

funcptr N5 NonSecure ResetHandler;
SCE_NS-3WTOR = WTOR TAELE NS START ADDR;

f* Set non-secure main stack (MSP_NS) *f
_TZ set MSP_NS{(*{uint32_t *)¥TOR_TABLE NS _START_ADDR));

f* Get non-secure reset handler */f
MonSecure ResetHandler = (funcptr NS)(*({uint32_t *)({(¥TOR_TABLE_NS_START_ADDR) + 4U)3);

/* Start non-secure state software application */
MonSecure ResetHandler();

AN5394 - Rev 3 page 16/31

AN5394

Exploring the example project

Note:

2.25

AN5394 - Rev 3

. main.c:137: The non-secure vector table offset register is initialized with the address to the interrupt vector
for the non-secure application.

. main.c:140: The non-secure Main Stack Pointer is initialized.

. main.c:143: The address for the non-secure reset handler is fetched from the non-secure interrupt vector
table. This is the second entry in the table.

. main.c:146: Executes the function pointer to jump to the non-secure reset handler.

The function pointer mechanism is the only way to jump from secure to non-secure context. To learn more look
inside file main.h in the secure project. It contains the following lines:

define CMSE NS CALL _ attribute((cmse nonsecure call)) /* Function pointer declaration in
non-secure */

typedef void CMSE NS CALL (*funcptr) (void);

typedef funcptr funcptr NS; /* typedef for non-secure callback functions */

The breakpoint in main is only set for the secure application. Therefore, in order to halt on first line in non-secure
main, the user must set a breakpoint manually.

After performing a Step info operation on main.c:146, or if the user manually sets up a breakpoint in non-secure
main () and presses Continue operation, the execution halts on the first line in non-secure main () as shown in
Figure 16.

Figure 16. Jump made from secure to non-secure

m workspace_1.1.0.19rc6 - STM32L552_EVAL_MX_NonSecure/Core/Src/main.c - STM32CubelDE — O x
File Edit Source Refactor Navigate Search Project Run Window Help
DrlGlEasl e sriesseessieoeisrios - Fariflroeoyo-eo [Quick Access || 8| B[4
Debug % @ Project Explorer & %[¥ =8 |@maine | Bmainc = -0 s
o wrELval L =2
v [STM321552_EVAL_MX_NonSecure Debug [STM32 Corte 99 */ S A
v i STM32L552_EVAL_MX_NonSecure.elf [cores: 0] 9=int main(void) b
~ i Thread #1 [main] 1 [core: 0] (Suspended : Breakp: 1 { B
= main() at main.c:110 0x8040580 g /* USER CODE BEGIN 1 */ D
= Reset_Handler() at startup_stm32/552zetxq.s:9: " /* USER CODE END 1 */
ol C/ST/STM32Cubel DE_1.1.0.19rc6/STM32CubelDE/p 5
5 ST-LINK (ST-LINK GDB server) 6
7 /* MCU Configuration---------m--mmmm oo e
8
9 /* Reset of all peripherals, Initializes the Flash interface ar
o | HAL_Init();
1
2 /* USER CODE BEGIN Init */
3
4 /* USER CODE END Init */
5
6 /* USER CODE BEGIN SysInit */
117 v
< > < >
| Writable | Smart Insert /110 3103 ‘Non-Secu]

RDP-level 0.5: loading and debugging the non-secure project

In RDP-level 0.5 the debugger is not able to read or write any information related to the secure side.
Consequently, the STM32L5 Series device must already contain a secure image, which initializes the SAU
properly, to be able to debug the non-secure project. Furthermore the non-secure linker script and the SAU setup
must be in sync. The example project used in this application note can be used as reference.

The presentation is the current section assumes that the secure side is already programmed and the RDP-level
Option Byte is set to 0.5.

Debug configuration

To create the debug configuration to load the non-secure image, perform the following steps:
1. Select the non-secure project in [Project Explorer].
2. Right-click [Debug As...] and select [STM32 Cortex-M C/C++ Application].

3. Give the configuration a useful name so that it can be easily identified. In the case illustrated in
Section 2.2.5 , the suffix RDP0.5 is appended.

page 17/31

https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series.html

m AN5394

Exploring the example project

4. Move to the Startup tab. Verify that Download and Load symbols are set true for the non-secure project el f
file.

Figure 17. Startup configuration load list for RDP 0.5

Name: | STM32L552E-EV Debug RDPO.S‘

Main | % Debuggerlii' Startupl L Source‘ & Common

Initialization Commands

Load Image and Symbols

File Build Download Load sy...
Debug\TrustZoneEnabled_NonSecure.el... See Main... * true true

Click [OK] to launch the debug configuration. The device performs a reset and the debugger waits for the CPU to
make the jump from the secure to non-secure context before it can halt execution.

Note: In RDP-level 0.5, if the user tries to halt the CPU while it is executing secure code, the halt event is kept pending
until the CPU returns to the non-secure side. If the CPU spends more than two seconds in the secure side, the
halt operation is in timeout.

In the “Debug Configurations” dialog, the “Startup” tab contains a “Max halt timeout(s)” selection, which can be
configured for the debug probe of the ST-LINK GDB server to wait for longer timeout. For both debug probes to
wait for longer timeout, ST-LINK GDB server and OpenOCD, a . gdbinit file needs to be created. This file
must be available in PROJECT ROOT/.gdbinit and contain the following commands to gdb., where the
values are in seconds and can be changed according to application needs:

. set remotetimeout 50
. set tcp connect-timeout 50
22,6 TrustZone® specific extension in Debug perspective and views

Specific features are available in STM32CubelDE to support STM32 devices with enabled TrustZone®.

At the bottom of the Debug perspective, there is a Security indicator. This indicator shows either the Secure or
Non-Secure status depending on the context in which the application execution is halted, secure or non-secure.
Both states of this indicator are shown in Figure 18.

Figure 18. Security indicator

CSECUrE : ‘Mon-Secure

The Registers view is extended to display the banked secure and non-secure registers. These registers are
suffixed by _S for secure and _NS for non-secure registers.

AN5394 - Rev 3 page 18/31

AN5394

Exploring the example project

3

Figure 19. Banked secure and non-secure registers
Lt
Regis.. ¥ # Disass.. % Expre.. % Break.. @ Fault.. =

FAULTMASK_NS 0x0
CONTROL_NS Ox4

Name Value
i d15 0x0
i fpscr 0x0
i PRIMASK 0x0
tii BASEPRI 0x0
£t FAULTMASK 0x0
titt CONTROL 0x0
1 MSP 0x20021ff0
i PSP Oxffffftfc
fiti MSP_NS 0x20021ff0
1 PSP_NS Oxfffffffc
1 MSP_S 0x30017f78
i PSP_S Oxfffffffc
£t MSPLIM_S 0x0
fiti PSPLIM_S 0x0
1 MSPLIM_NS 0x0
i PSPLIM_NS 0x0
aii PRIMASK_S 0x0
titi BASEPRI_S 0x0
fitt FAULTMASK S 0x0
i CONTROL_S 0x4
i PRIMASK_NS 0x0
fiti BASEPRI_NS 0x0
i 50 Ox1
i s1 0x1
1 52 0x1
i 53 0x1
i g4 Ox1
it s5 0x1
1 56 0x1
i 57 Ox1
i 58 0x1
i s9 0x1

s10 0x1

The SFRs view shows the the content of file cMSTIS-SVD. For each peripheral that can be shared between secure
and non-secure context, this file contains both the non-secure and secure memory address.

AN5394 - Rev 3 page 19/31

AN5394

Create an empty project with TrustZone® enabled

Figure 20. SFRs view showing peripherals with both secure and non-secure address spaces

E workspace_1.1.0.19w37_targetplatform_2019-09 - STM32L552E-EV_Templates_TrustZone_NonSecure/Example/User/main.c - STM32CubelDE - [X
File Edit Source Refactor Navigate Search Project Run Window Help
[l N B RBPrIENZRRIBE QAR fivfivoovray Quick Access. | B
4 Debug = & Project Explorer Bl %P ¥ =0 @am3dsechale B main Bmainc 2 E stm3215xc_hal.c stm321552e_evalc stm32I552e_evalh “ 0 iliReg.. #Dis.. % Exp.. %eBre.. @Fau.. ®Mo.. ®SFRs T @
~ [STM321552E-EV_Templates_TrustZone_Secure NO_LOAD Debug [STM32 MCU | 55 purpose timer for example or other time source), keeping in mind that ~ RD [0 n [O
2 STM32L552E £V, Templates TrustZone Secure.elf [cores: 0] 56 Time base duration should be kept 1ms since PPP_TINEOUT_VALUEs are defined [ope ferton 3
o Thread #1 T lcore: 0] Suspended - Breakpoint 57 and handled in milliseconds basis. @
read #1 [main] 1 [core: O] (Suspended : Breakpoint) 58 - Set NVIC Group Priority to 3 Register Address Value ~la
= main(at main.c84 0x804485¢ 59 - Low Level Initialization =
set_Handler() at startup_stm321552xx5:98 08044802 0 */ =
N 61 HAL_TInit(); 0x42020... Oxfffffe7f i
8 C/ST/STM32CubelDE _1.1.0.19w38 targetplatform_2019-09/STM32Cubell = 3
2 ST-LINK (ST-LINK GDB server) 2 0:42020...0:0
63 /* Register SecureFault callback defined in non-secure and to be called by secure handler */ 0x42020.. 0xc0
64 SECURE_RegisterCallback(SECURE_FAULT_CB_ID, (void *)SecureFault_Callback); 0x42020... 0x140
65
66 /* Register SecureError callback defined in non-secure and to be called by secure handler */ (D, (0513
67 SECURE_RegisterCallback(GTZC_ERROR_CB_ID, (void *)SecureError_Callback); 0x42020... 0x8
68 [15:1] 0x0
69 [14:1] 0x0
76 /* Configure the System clock to have a frequency of 110 MHz */ 131 00
;; SystemClock_Config(); W2 00
73% /* Add your non-secure example code here [AREU I
7 */ o o 00
75 91 00
76 volatile int temp = bla_add(3, 7); - 11 00
77 BSP_LED_Init(LED4 + temp - 1@); /* Green LED */ 5
78 1 00
79 /* Infinite loop */ 61 00
80 while (1) [5:1] 0x0
alt Wil 00
83 HAL_Delay(250); B 0
84 BSP_LED_Toggle(LED4); 21 00
85 (11 0x0
86 } [0:1] 0x0
i; } 0x42020...
oy 0x42020... 0x0
90 * @brief Callback called by secure code following a secure fault interrupt 0x42020... 0x0
91 * @note This callback is called by secure code thanks to the registration 0x42020... 0:0
92 * done by the non-secure application with non-secure callable API 0x42020...
93 SECURE_RegisterCallback(SECURE_FAULT_CB_ID, (void *)SecureFault_Callback); 042020,
94 * @retval None
95 */
96-void SecureFault_Callback(void) 0x52020... Oxfffffe7
97 0x52020... 040
98 /* Go to infinite loop when Secure fault generated by IDAU/SAU check */ 052020... 0xc0
99 /* because of illegal access */
100 while (1) 0x52020... 0x140
101 { 0x52020... 0x18
102 Y DR 0x52020... 0x8
103 } "ODR15 [15:1] 0x0
?2‘; “ODR14 1411 0x0 N
oy ws8(0/0/0/0]0[0/o/0 o]o/o/0olo[olololofofo]o]olofo] o[olofof1]o]o
107 * @rief Callback called by secure code following a GTZC TZIC secure interrupt (GTZC_IRQn) Register: ODR
108 * @note This callback is called by secure code thanks to the registration -
secure cod Address: 0x52020414
109 * done by the non-secure application with non-secure callable API o 08
10 = SECURE_RegisterCallback(GTZC_ERROR_CB_ID, (void *)SecureError_Callback); falue: -
111 * @retval None Size: 32
112 Reset value: 00
113-void SecureError_Callback(void) Reset mask: OxFFFFFFFF
114 { | Access permission: RW
(s1| " reiniani] = SR Read action:
“Non-Secu: : Status: busy]

The Fault Analyzer view is also updated. It shows the new exception types applicable to the STM32L5 devices
and calculates the exception stack frame based on fault conditions and FPU usage.

2.3 Create an empty project with TrustZone® enabled

This chapter assumes that the reader is familiar with Section 2.1 Importing the TrustZone project template for
STM32CubelDE and knows about Option Bytes, memory partitioning, building, and debugging.

To start a new project, go to [File]>[New]>[STM32 project].

Figure 21. New empty project creation

m workspace - STM32CubelDE

AN5394 - Rev 3

File Edit Source Refactor Navigate Search Project Run
New Alt+Shift+N >

Open File...

Open Projects from File System...

Recent Files >

Ctrl+W
Ctrl+Shift+W

Close
Close All

Save Ctrl+S
Save As...
Save All

Revert

Ctrl+Shift+5

Move...

Window Help

Makefile Project with Existing Code
C/C++ Project

STM32 Project

Project...

Convert to a C/C++ Project (Adds C/C++ Nature)
Source Folder

Folder

Source File

Header File

File from Template

Class

Other... Ctrl+N

page 20/31

AN5394

Create an empty project with TrustZone® enabled

AN5394 - Rev 3

Select the MCU or board. In this example, an STM32L552E-EV Evaluation board is selected. Click [Next].

Figure 22. Target selection

LT stz Praject O X
Target Selection
(1 Target 'STM3EZLA52E-BV' has ‘Restricted Awailability’
Board Selectar
¢Baard Filter
Features Large Picture Docs & Resources Datasheet C

A
STM3ZLE5ZE-Ev

Part Mumber Search hd Y:i'
e = STMicroelectronics STM32L5527E Evaluation
Board Support and Examples
Wendar > Unit Price (US5§): 0.0
Mounted device: STM32] 5527F T
Type >
MCLMPL Series >
Other e
Frice =00
L
Ozcillator Freq. = 0 (MHZ)
L
Peripheral e
Accelerometer o
g Boards List: 1 item ¢t Export
@ [| owmkw] Patho | Tyge | Makethastns | UnttPrie QS | Monikd Deuis |
@
@
Button o ‘;:f STMIZLE52E-EV Ewaluation Board oo
@
@
@
2]

< Back Finish Cancel

page 21/31

m AN5394

Create an empty project with TrustZone® enabled

After selecting an MCU or board, the next step is the Project Setup step.

Figure 23. Project setup - Select Empty

[IH sTM32 Project O X

Project Setup

Setup STM32 project

Project Name: | LY EPARYyA=g 2/l

Use default location
Location: C:/Users/ /STM32CubelDE/workspace_1.1.0 Browse...

Options
Targeted Language

®c Oc++

Targeted Device Usage
Enable TrustZone

Targeted Binary Type
@ Executable Static Library

Targeted Project Type
(O STM32Cube (® Empty

@ Next > Finish | ‘ Cancel

. Name the project.
. Make sure that Enable TrustZone under Targeted Device Usage is checked.
This guarantees that the project is generated as three projects in a hierarchical structure instead of a single
flat project. The root project has no CDT nature and therefore is not aware of concepts such as build
configurations or debug configurations. The root project is just a container for the two target projects that
permits sharing some common code between the two MCU projects.
— The first MCU project is related to the non-secure part of the application. In that sense it resembles a
legacy STM32 project.
— The second sub-project is related to the secure part of the application. This project configures the
compiler to build with the -mcmse flag and the linker to produce an object file for the non-secure
callable functions.

If Enable Trust Zone is not checked, the STM32L5 works like any other single-core STM32 microprocessor
from a security standpoint. This is not the main use case, and hence not documented in this application
note.

. Targeted Project Type: Select Empty. This results in an empty project skeleton, which can be manually
populated with files.

AN5394 - Rev 3 page 22/31

m AN5394

Create an STM32CubeMX project with TrustZone® enabled

Note: 1. The “Enable TrustZone” selection is irreversible. It leads to either one flat project structure with TrustZone®
disabled, or one hierarchical project structure with TrustZone® enabled. There is no way to switch between
the two project structures once the projects are created.

2. Enabling TrustZone® in the project wizard does not enable Option Byte TZEN, which must also be set using
STM32CubeProgrammer.

After, naming the project, checking Enable Trust Zone, and setting Targeted Project Type to Empty, click on
[Finish]. The empty project structure is created as illustrated in Figure 24.

Figure 24. Empty project structure

Ewurkspace - 5Th32CubelDE
File Edit Source Refactor MNawigate Search Project R

N HR S -R-@in@id gy e
7 Project Explorer 52 0% ¥ = 0

w —I STMA32L552FE-EWAL
W m STRAIZLES2ZE-BvdL_MonSecure (in MonSecure)

> i Includes
s 2 Inc
R e
> 2 Startup
| STM32L55ZZETHO_FLASH.Id
[STM32L55ZZETHO_RAM.Id
W E STMIZLA527E-Bvial_Secure (in Secure)

5 i) Includes

s A Inc

o e

> 2 Startup
[STM3ZLO5ZZETHO_FLASH.Id
[STM32L55ZZETHO_RAM.Id

One root project contains two sub-projects. Only the two MCU sub-projects can be built and debugged. The root
project is only a container. The secure main () function must be updated with code to call the non-secure
application. How this is done can be studied in the secure template project, in other secure firmware example
projects, or by creating an STM32CubeMX project with TrustZone® enabled.

How to debug these projects is described in Section 2.2.4 RDP-level 0: loading and debugging both secure and
non-secure projects or Section 2.2.5 RDP-level 0.5: loading and debugging the non-secure project.

24 Create an STM32CubeMX project with TrustZone® enabled

Perform the same steps as for the empty project in Section 2.3 Create an empty project with TrustZone enabled
in order to create a project with an . ioc file where resources are controlled by STM32CubeMX. Remember to
check the Enable Trust Zone checkbox and set the Targeted Project Type to STM32Cube.

AN5394 - Rev 3 page 23/31

AN5394
Create an STM32CubeMX project with TrustZone® enabled

AN5394 - Rev 3

Figure 25. Project setup - Select STM32Cube

Targeted Device Usage
Enable Trust Zane

Targeted Binary Type
(®) Executable Static Library

Targeted Project Type
(®) STM32Cube () Ermpty

[File]>[New STM32 Project]>[Project Setup] page which is the second step in the project wizards.

Figure 26 shows a screenshot of the STM32L5 project generated by STM32CubeMX integrated in
STM32CubelDE.

Figure 26. Generated project from STM32CubeMX

[E wiorkspace_1.1.0.1%w39 - Device Configuration Toal - STM32CubelDE - O X
File Edit Source Refactor Mavigate Search Project Run Window Help
C-H @S-8 RN QG - E-Griki® I iBE T o a0 [ouickacees: || % ||
[Project Explarer 57 g v =08 b= = g
v [T asdf_mx Pinaut & Configuration
~ [asdf_rmix_MonSecure (in HonSecure)
> i&: Binaries
> [l Inchudes Finout view System view
» 2 Core —
> [ZR Drivers
> (= Debug System Core >
|t STWI3ZLA52ZETXQ_FLASH.IA
[STM32L552ZETHO_RAM.Id Analag >
~ [asdf_rmic_Secure {in Secure)
»
> 3, Binaries Timer >
> [l Includes
» €2 Core Connectiity >
> [ZR Drivers
> (2= Debug
hultimedi >
[3 STM32L552ZETRO FLASH.I hmeda
[STM32L552ZETHO_RAM.Id
« = Drivers Secuiity 4
> [CMSIS
> [STM32LSxx _HAL Driver Computing >
v [Secure_nsclib =
secure_nsc.h Migdlaware > STM32L552ZETxQ
[asdf_rmx.ioc =
Trace and Debug >
Powsr and Themal >
Utilities >
[#1 Problems 52) Tesks Bl Console [] Properties 3> ¥ = B [Build Analyzer 33 == Static Stack Analyzer ¥ =8
Ditems - asdf_mx_NonSecure.elf - fasdf mx_NonSecure/Debug - Sep 26, 2019
Description Resource Path 8:48:00 PM
Memory Regions hdermaory Details
Region Start address End address Size Free
[RAM 320018000 (20040000 160 KB 15845
RO (< 08040000 0x08080000 236 KB 25017
< >
< > < >
a

The Drivers folder containing CMSIS and HAL code is stored in the root project and links are created to its code
in order to build the code in the two MCU projects.

How to debug these projects is described in Section 2.2.4 RDP-level 0: loading and debugging both secure and
non-secure projects or Section 2.2.5 RDP-level 0.5: loading and debugging the non-secure project.

page 24/31

m AN5394

Making calls from the non-secure to the secure domain

3 Making calls from the non-secure to the secure domain

This section illustrates how to make a function call from the non-secure application to the secure application. This
is done using GCC pragmas and a glue layer called the non-secure callable, abbreviated as NSC.

In order to make a call from a non-secure function to a secure function, the secure function must be defined with
__attribute ((cmse nonsecure entry)) as shown in the example below:

uint32 t attribute((cmse nonsecure entry)) getSecureKey(void)
{

return Oxdeadbeef;

}

Important: The function prototype in the corresponding header file must not use the uint32 t
__attribute((cmse nonsecure entry)).

To quickly try this example:
. Copy-paste the code snippet above into the secure application main.c. Place the snippet inside the USER
CODE BEGIN PV Begin/End section or similar.

. In the root project, open the secure nsclib/secure_nsc.h header file. Add the following line into secu
re nsc.h:

uint32_t getSecureKey (void);

This header file is a convenient example since it is included by both the secure and non-secure projects.
. Add a call in non-Secure main.c:

int temp = getSecureKey();

. Build the non-secure project. This triggers the build of the secure project.

The build of the secure project results in secure nsclib.o, which is linked by the non-secure application
to allow non-secure-to-secure transaction.

. Place a breakpoint on the line containing int temp = getSecureKey () ;
. When reaching the breakpoint, enable the instruction stepping mode. Use step into.

— Aveneerfunction, getSecureKey veneer, is generated in the non-secure code to handle the long
jump between non-secure and secure memory addresses. This is not security related but the result of
a long jump.

— The next step consists in executing the sg (secure gateway) instruction in the secure memory, which
authorizes non-secure-to-secure transactions.

— After the authorization, the execution branches to the getSecureKey () function in the secure
memory.

— ltis possible that this function calls another secure function that is not a non-secure callable.
° In RDP-level 0, instruction stepping can be continued also in this function.
° In RDP-level 0.5, stepping in secure application is not allowed.

- In the prologue of getSecureKey (), all relevant registers are cleaned from the secure-side leaking
information into the non-secure side.

- When the non-secure call is finished, execution returns to the non-secure side.

AN5394 - Rev 3 page 25/31

m AN5394

FAQs
4 FAQs
4.1 The debugger crashes after loading the non-secure and secure images in RDP0
Answer #1

Double-check that the secure image is at the bottom of the load list table in the debug configuration. The last
image in this list is used to setup the Program Counter boot address, which must be in the secure memory. Refer
to Section 2.2.4 RDP-level 0: loading and debugging both secure and non-secure projects.

Answer #2

In RDP-level 0.5, the debugger times out if the application spends more than two seconds in the secure context.
Try extending the timeout as described below.

In the “Debug Configurations” dialog, the “Startup” tab contains a “Max halt timeout(s)” selection, which can be
configured for the debug probe of the ST-LINK GDB server to wait for longer timeout. For both debug probes to
wait for longer timeout, ST-LINK GDB server and OpenOCD, a .gdbinit file needs to be created. The GDB
client also must be instructed to use longer timeout values, which is done by creating a file in the project root
folder named . gdbinit. This file must contain two lines:

. set remotetimeout 50

. set tcp connect-timeout 50

Refer to Section 2.2.5 RDP-level 0.5: loading and debugging the non-secure project.
4.2 | get secure GTZC interrupt at various times during debug

The application jumps to the GTZC interrupt routine if any of the GTZC/TZIC illegal access flags are raised and

corresponding interrupt is enabled. The GTZC/TZIC illegal access flags can be raised because the debugger (ST-

LINK GDB server or OpenOCD) tries to access non-secure memory addresses before the SAU is properly

initialized.

For example, the following features of STM32CubelDE and other IDEs trigger memory reads:

. Setting a breakpoint on a memory address triggers a read on this address.

. Having a Memory Browser, Expressions or any other view that reads data from memory, triggers reads on
halt events or other non-transparent IDE events.

Possible workarounds are:

. Do not enable GTZC interrupt on debug builds.

. Clear the necessary GTZC/TZIC illegal access flags after SAU initialization before enabling the GTZC
interrupt.

AN5394 - Rev 3 page 26/31

m AN5394

Revision history

Table 1. Document revision history

9-Jan-2020 1 Initial release.

Updated Section 4.2 | get secure GTZC interrupt at various times during

12-Feb-2020 2 debug.

Extended the description to the debug using OpenOCD in RDP-level 0:
loading and debugging both secure and non-secure projects, RDP-level 0.5:
loading and debugging the non-secure project and The debugger crashes
after loading the non-secure and secure images in RDPO.

23-Jul-2020 3

AN5394 - Rev 3 page 27/31

m AN5394

Contents

Contents
1 General information s 2
1.1 PrereqUISItES . ..o e e e 2
1.2 Theusecasesinthisdocument i 2
1.3 OptioN Bytes . ..o 3
1.4 Specific hierarchical project structure for secure and multi-core MCUs 3
2 Creating and importing projects ... i i i e 5
21 Importing the TrustZone® project template for STM32CubelDE 5
2.2 Exploring the example project 7
221 Option Bytes 7
222 Explore the linker script, memory partitioning, and SAU initialization. 8
223 TrustZone®-related build settingst 8
224 RDP-level 0: loading and debugging both secure and non-secure projects. 11
225 RDP-level 0.5: loading and debugging the non-secure project 17
2.2.6 TrustZone® specific extension in Debug perspective and views 18
2.3 Create an empty project with TrustZone®enabled 20
2.4 Create an STM32CubeMX project with TrustZone® enabled 23
3 Making calls from the non-secure to the securedomain........................... 25
4 O L 26
4.1 The debugger crashes after loading the non-secure and secure images in RDPO........ 26
4.2 | get secure GTZC interrupt at various times duringdebug 26
ReVISIiON NiStOoryo i i i s s i 27
L0 o T 1 =T 3 28
Listof tableso e 29
List Of fiQUIres. . ..o i i 30

AN5394 - Rev 3 page 28/31

m AN5394

List of tables

List of tables

Table 1. Document revision history 27

AN5394 - Rev 3 page 29/31

‘7 AN5394

List of figures

List of figures

Figure 1. STM32L5 project with hierarchical project structure. 3
Figure 2. Changing the visual representation between flat and hierarchical project structure 4
Figure 3. Root project with .projectfile 4
Figure 4. Import project template 5
Figure 5. Selection of the STM32L552E-EV template project 6
Figure 6. Building the imported template project 7
Figure 7. STMB32L5 secure project: compiler call. 9
Figure 8. STMB32L5 secure project: linker configuration 10
Figure 9. STM32L5 non-secure project: linker configuration. 10
Figure 10. Debugger tab with ST-LINK GDB server selection. e 12
Figure 11. Debugger tab with OpenOCD selection e e e 13
Figure 12. Add binary and symbol loads to non-secure project. 14
Figure 13. Startup configuration load list 15
Figure 14. Debugger halted on secure main function 16
Figure 15. Initialization of the secure to non-secure Jump. 16
Figure 16. Jump made from Secure t0 NON-SECUIEttt e e e e e e 17
Figure 17. Startup configuration load list for RDP 0.5 18
Figure 18. Security INdiCator 18
Figure 19. Banked secure and non-secure registers 19
Figure 20. SFRs view showing peripherals with both secure and non-secure address spaces 20
Figure 21. New empty project creation 20
Figure 22. Target selection 21
Figure 23. Projectsetup - Select Empty 22
Figure 24. Empty project SIrUCIUre 23
Figure 25. Project setup - Select STM32Cube 24
Figure 26. Generated project from STM32CubeMX 24

AN5394 - Rev 3 page 30/31

m AN5394

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics — All rights reserved

AN5394 - Rev 3 page 31/31

http://www.st.com/trademarks

	Introduction
	1 General information
	1.1 Prerequisites
	1.2 The use cases in this document
	1.3 Option Bytes
	1.4 Specific hierarchical project structure for secure and multi-core MCUs

	2 Creating and importing projects
	2.1 Importing the TrustZone(R) project template for STM32CubeIDE
	2.2 Exploring the example project
	2.2.1 Option Bytes
	2.2.2 Explore the linker script, memory partitioning, and SAU initialization
	2.2.3 TrustZone(R)-related build settings
	2.2.4 RDP-level 0: loading and debugging both secure and non-secure projects
	2.2.5 RDP-level 0.5: loading and debugging the non-secure project
	2.2.6 TrustZone(R) specific extension in Debug perspective and views

	2.3 Create an empty project with TrustZone(R) enabled
	2.4 Create an STM32CubeMX project with TrustZone(R) enabled

	3 Making calls from the non-secure to the secure domain
	4 FAQs
	4.1 The debugger crashes after loading the non-secure and secure images in RDP0
	4.2 I get secure GTZC interrupt at various times during debug

	Revision history
	Contents
	List of tables
	List of figures

