
Introduction
This application note describes how to get started with projects based on STM32L5 Series microcontrollers in
STMicroelectronics STM32CubeIDE integrated development environment.

Getting started with projects based on the STM32L5 Series in STM32CubeIDE

AN5394

Application note

AN5394 - Rev 3 - July 2020
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394

1 General information

STM32CubeIDE supports STM32 32-bit products based on the Arm® Cortex® processor.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

1.1 Prerequisites

The following tools are prerequisites for understanding the tutorial in this document and developing an application
based on the STM32L5 Series with Arm® TrustZone® enabled:
• STM32CubeIDE 1.2.0
• STM32CubeProgrammer (STM32CubeProg) 2.3.0: configuration of Option Bytes
• STM32Cube_FW_L5_V1.0.0: STM32CubeL5 firmware with example project, and HAL and CMSIS drivers

Users are advised to keep updated with the documentation evolution of the STM32L5 Series at www.st.com/en/
microcontrollers-microprocessors/stm32l5-series.

1.2 The use cases in this document

In the STM32CubeIDE context, users have a number of different ways to explore and get started with the
development of projects based on the STM32L5 Series:
• Import an STM32CubeIDE project from the STM32CubeL5 MCU Package to learn by using a working

example
• Create an STM32CubeMX project using the STM32CubeMX tool integrated inside STM32CubeIDE, or the

stand-alone STM32CubeMX tool
• Create an empty project in STM32CubeIDE and write their own code
• Create an empty project in STM32CubeIDE and copy resources from the example project template available

in the STM32CubeL5 MCU Package

The following approach is recommended to get familiar and successfully started with a project development
based on the STM32L5 Series:
1. Import a TrustZone® example project, which is part of the STM32CubeL5 MCU Package. This is the

quickest way to understand the CMSIS and HAL drivers provided for bootstrapping the STM32L5 device.
2. Create an empty project as the production project and copy the code from the STM32CubeL5 MCU

Package. In empty projects, users are in full control of the source code and configuration files, which are not
touched by STM32CubeMX. This gives users higher flexibility, but require a slightly steeper learning curve.

3. Create an STM32CubeMX project to use the graphical interface to configure the hardware and generate the
corresponding HAL drivers. This can be used as the production project or playground to explore and learn
more.

Some template projects are supplied in STM32CubeIDE project format; these are template projects with and
without TrustZone® enabled. For example:
• Using TZEN = 1:

STM32Cube_FW_L5_V1.0.0\STM32Cube_FW_L5_V1.0.0\Projects\STM32L552E-EV\Templates\T
rustZoneEnabled\

• Using TZEN = 0:
STM32Cube_FW_L5_V1.0.0\STM32Cube_FW_L5_V1.0.0\Projects\STM32L552E-EV\Templates\T
rustZoneDisabled\

This application note refers to the TrustZoneEnabled project template mentioned above, where TrustZone® is
enabled by Option Byte TZEN configured to 1.
The readme file for this project template describes how to configure the Option Bytes to match the code; It
provides a good template to learn some important configuration use cases.
After their first learning experience, users can choose between creating an empty project, start with an
STM32CubeMX-managed project for their own application development, or try both.

AN5394
General information

AN5394 - Rev 3 page 2/31

https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394
https://www.st.com/en/product/stm32cubel5?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394
https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series
https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394
https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series.html

Firmware STM32Cube_FW_L5 contains many other example projects for different peripherals with
STM32CubeIDE project files. These can be imported into STM32CubeIDE and studied for learning how to use
STM32L5 peripherals.

1.3 Option Bytes

To learn more about the Option Bytes, refer to the the reference manual for microcontrollers in the STM32L5
Series (RM0438). For the specific example project template that are the basis of this application note, the correct
Option Bytes values are listed in the readme.txt file in the example project. STM32CubeProgrammer
(STM32CubeProg) must be used to program the Option Bytes.

1.4 Specific hierarchical project structure for secure and multi-core MCUs

Before importing or creating projects, it is important to consider some project structural concepts. After creating an
STM32L5 project, the project structure is automatically made hierarchical. The project structure for single-core
projects is flat. In a multi-core project, or a project with a TrustZone®-enabled MCU like in the STM32L5 Series,
the hierarchical project structure is used. When the user creates or imports a project, it consists of one root
project together with sub-projects referred to as MCU projects. The MCU projects are real CDT™ projects; They
can contain build and debug configurations while the root project cannot. The root project is a simple container
that allows sharing common code between the secure and non-secure MCU projects (in the case of the STM32L5
Series), as illustrated in Figure 1.

Figure 1. STM32L5 project with hierarchical project structure

AN5394
Option Bytes

AN5394 - Rev 3 page 3/31

https://www.st.com/resource/en/reference_manual/dm00346336.pdf
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394
https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series.html

If the setting has been changed or the project is otherwise not in a hierarchical structure, it can be changed as
shown in Figure 2.

Figure 2. Changing the visual representation between flat and hierarchical project structure

In the file system, the two MCU projects are located inside the root project, which only contains one .project
file.

Figure 3. Root project with .project file

AN5394
Specific hierarchical project structure for secure and multi-core MCUs

AN5394 - Rev 3 page 4/31

2 Creating and importing projects

This chapter describes how to import or create projects based on the STM32L5 Series. It starts by explaining how
to import the example project template available in the STM32CubeL5 MCU Package. After importing, building,
debugging and adding some function calls to non-secure callables, it shows how to create an own empty project,
copying the very same resources from the example project as a base template for the continued application
development.

Note: It is not recommended to continue the application development in the example project itself mainly because all
resources in this project are linked into the project:
• This means that the project is not self-contained, making version control more difficult
• Driver resources are shared with all other projects
• The Eclipse CDT™ indexer cannot always resolve linked resources and properly enable all code navigation

and visualization features

Creating a new empty project using the example project as a template is a better approach for continued
application development.

2.1 Importing the TrustZone® project template for STM32CubeIDE

To import the STM32CubeL5 template project into STM32CubeIDE, first go to [File]>[Import] and select Existing
Projects into Workspace as shown in Figure 4.

Figure 4. Import project template

AN5394
Creating and importing projects

AN5394 - Rev 3 page 5/31

https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series.html

Then select the appropriate project, which in Windows® by default is located in the User folder, such as $HOME\S
TM32Cube\Repository\STM32Cube_FW_L5_VX.X.X\Projects\STM32L552E-EV\Templates\TrustZo
neEnabled\ (refer to Figure 5).

Figure 5. Selection of the STM32L552E-EV template project

Attention: When importing projects from STM32Cube MCU Packages, do not use the “Copy projects into workspace”
setting since it breaks the links to shared code such as HAL and CMSIS drivers in MCU Packages.

AN5394
Importing the TrustZone® project template for STM32CubeIDE

AN5394 - Rev 3 page 6/31

After selecting all three projects, click on [Finish] to import the template project.

Figure 6. Building the imported template project

2.2 Exploring the example project

To get familiar with the example project, start by reading the project readme.txt file, which is linked to the Doc
folder.

2.2.1 Option Bytes
Set the Option Bytes according to the readme.txt file using STM32CubeProgrammer. For TrustZone®-enabled
projects, these settings are typically:
• TZEN = 1
• DBANK = 1
• SECWM1_PSTRT = 0x0 and SECWM1_PEND = 0x7F, meaning that all 128 pages of Bank1 are set as

secure
• SECWM2_PSTRT = 0x1 and SECWM2_PEND = 0x0, meaning that no page of Bank2 is set as secure,

hence making Bank2 non-secure

Important remarks:
• The SECWMx Option Bytes are not visible until the TZEN is enabled and applied to target
• Always double-check the readme.txt file for correct Option Byte values

For more information, refer to the STM32CubeProgrammer user manual (UM2237).

AN5394
Exploring the example project

AN5394 - Rev 3 page 7/31

https://www.st.com/resource/en/user_manual/dm00403500.pdf

2.2.2 Explore the linker script, memory partitioning, and SAU initialization
Each secure and non-secure project is built with its own linker script. This section presents some of the
differences between secure and non-secure linker scripts in the case of an STM32L552ZE microcontroller.
The Flash memory size of the STM32L552ZE is 512 Kbytes. With the Option Byte DBANK = 1, the Flash
memory is split up into two banks of 256 Kbytes each: one secure and one non-secure bank. Both banks are then
further split into regions for different types of toolchain outputs.
Secure Flash linker script:

MEMORY
{
 RAM (xrw) : ORIGIN = 0x30000000, LENGTH = 96K
 ROM (rx) : ORIGIN = 0x0C000000, LENGTH = 248K
 ROM_NSC (rx) : ORIGIN = 0x0C03E000, LENGTH = 8K /* non-secure callable region */
}

Non-secure Flash linker script:

MEMORY
{
 RAM (xrw) : ORIGIN = 0x20018000, LENGTH = 96K
 ROM (rx) : ORIGIN = 0x8040000, LENGTH = 256K
}

In this example, the secure application starts at 0x0C00 0000 while the non-secure application starts at
0x0804 0000. In the secure linker script, an area of 8 Kbytes is set aside to contain the non-secure callables,
which is the glue that allows a non-secure application to call a defined set of functions in the secure area.
The linker script must be aligned with the memory partitioning header file. In this example, the memory
partitioning is defined in file partition_stm32l552xx.h. This header file contains the settings to configure the
SAU. A summary of one memory region is presented below:

/* Initialize and enable the SAU */
#define SAU_INIT_CTRL 1
#define SAU_INIT_CTRL_ENABLE 1
...
/* <e>Initialize SAU Region 1 with memory attributes */
#define SAU_INIT_REGION1 1
#define SAU_INIT_START1 0x08040000 /* start address of SAU region 1 */
#define SAU_INIT_END1 0x0807FFFF /* end address of SAU region 1 */
/* Region can be set as: 0 = non-secure, 1= secure, non-secure callable */
#define SAU_INIT_NSC1 0

In total, eight memory regions can be configured in non-secure or secure/non-secure callable. The SAU is
configured as part of the boot sequence:
Reset_Handler() → calls SystemInit() → calls the inlined TZ_SAU_Setup() function.
TZ_SAU_Setup() sets up the SAU.

Note: 1. The linker script and partition header file must be kept in coherence. If the linker script for the non-secure
project defines a certain Flash area to be used for non-secure use, then this area must also be described
properly in the partitioning header file. In the examples above, both the linker script and partitioning header
file point out 0x0804 0000 to be used as non-secure Flash area.

2. The CPU cannot access the non-secure memory before the SAU is initialized. Any attempt by the CPU or
the debugger to read the non-secure Flash results in RAZ (Read As Zero): Only zeros are returned. The
TZ_SAU_Setup() function must be executed to give access to the non-secure Flash.

3. The debugger is able to program the non-secure binary by configuring the SAU with a dummy
configuration. The debugger issues the reset command after Flash loading is complete to allow debug
using the SAU initialized with the user's SAU settings.

2.2.3 TrustZone®-related build settings
In a TrustZone®-enabled STM32L5 project, some additional build settings are configured. The user is advised not
to change these settings in the typical use case.

AN5394
Exploring the example project

AN5394 - Rev 3 page 8/31

https://www.st.com/en/product/stm32l552ze?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5394

In the secure project, the compiler is called with the -mcmse attribute.

Figure 7. STM32L5 secure project: compiler call

AN5394
Exploring the example project

AN5394 - Rev 3 page 9/31

In the secure project, the linker is configured to generate secure gateways for the non-secure callables.

Figure 8. STM32L5 secure project: linker configuration

In the non-secure project, the linker is configured to link objects from the non-secure callable library that is built by
the secure application.

Figure 9. STM32L5 non-secure project: linker configuration

AN5394
Exploring the example project

AN5394 - Rev 3 page 10/31

No change is needed in this example project. The non-secure project includes the secure library from the secure
project. Therefore, the secure project is scanned for changes and built before the non-secure project, if
necessary.

User checkpoint

At this point, it is recommended that users evaluate their proper understanding of the build mechanism before
proceeding further. Try building the non-secure project and thereby auto-trigger the build of the secure project.

2.2.4 RDP-level 0: loading and debugging both secure and non-secure projects
Loading the applications into the STM32L5 target can be done with any of the following tools:
• ST-LINK GDB server, by invoking a bundled STM32CubeProgrammer CLI version
• OpenOCD
• STM32CubeProgrammer stand-alone

This application note focuses on the use of the ST-LINK GDB server and OpenOCD. Unless noted otherwise, all
screenshots apply to both.

Note: It is not possible to create debug configurations for the root project but only for the two application projects:
secure and non-secure.
In the use case considered, it is assumed that the user has full access to all code and wants to debug the
complete application. The Option Byte RDP-level must remain set to 0 (0xAA).
To create a debug configuration, perform the following steps:
1. Select the secure project in [Project Explorer].
2. Right-click [Debug As…] and select [STM32 Cortex-M C/C++ Application].

AN5394
Exploring the example project

AN5394 - Rev 3 page 11/31

3. Move to the Debugger tab.
– To use the ST-LINK GDB server, keep all fields with their default values as shown in Figure 10.

Figure 10. Debugger tab with ST-LINK GDB server selection

AN5394
Exploring the example project

AN5394 - Rev 3 page 12/31

– To use OpenOCD, select the [Debug probe] as ST-Link (OpenOCD) and keep the default values as
shown in Figure 11.

Figure 11. Debugger tab with OpenOCD selection

4. Move to the Startup tab. In the Load Image and Symbol table, only the secure binary is currently added. In
order to load and debug both the secure and non-secure binaries, the user must manually add the non-
secure binary to the load list.

AN5394
Exploring the example project

AN5394 - Rev 3 page 13/31

5. Click [Add…]
a. Project: Select the non-secure project
b. Build Configuration: Debug
c. Make sure that the Download and Load symbols checkboxes are checked

Figure 12. Add binary and symbol loads to non-secure project

AN5394
Exploring the example project

AN5394 - Rev 3 page 14/31

After adding the non-secure elf file to be part of the list of elf files to be loaded to the embedded target, the
load list looks as shown in Figure 13.

Figure 13. Startup configuration load list

Attention: STM32L5 Series devices always boot in secure state when TrustZone® is enabled. The debugger sets the
Program Counter using information from the last image in the Load image and Symbols table. Make sure the
secure image is at the bottom of the load list.

Note: Before launching a debug session, STM32CubeIDE checks if some code changes require a new build. The time
required for such a check grows with large code bases. Some users may want to disable this check to get a
faster debug launch procedure. In this case, they must also keep track of build changes and make sure to build
manually.
The debug configuration setup presented above guarantees that any change in the code since the last build
triggers a new build. Both images are downloaded and GDB loads symbols from both binaries in order to be able
to map instructions to C code.
Assuming that the STM32L5 device is connected and that Option Bytes are properly configured, click [OK] to
launch the first debug session.

AN5394
Exploring the example project

AN5394 - Rev 3 page 15/31

The application halts at the first line in main() of the secure application.

Figure 14. Debugger halted on secure main function

In main.c:54 - SystemIsolation_Config(): In this function, the secure side books memory blocks and
peripherals to be accessed by the non-secure side.
Use stepping to step-through the first lines in the secure application and learn how the device is configured to
make the jump from secure to non-secure context.
In main.c: There is a function call to NonSecure_Init(). Step into this function as shown in Figure 15.

Figure 15. Initialization of the secure to non-secure jump

AN5394
Exploring the example project

AN5394 - Rev 3 page 16/31

• main.c:137: The non-secure vector table offset register is initialized with the address to the interrupt vector
for the non-secure application.

• main.c:140: The non-secure Main Stack Pointer is initialized.
• main.c:143: The address for the non-secure reset handler is fetched from the non-secure interrupt vector

table. This is the second entry in the table.
• main.c:146: Executes the function pointer to jump to the non-secure reset handler.

The function pointer mechanism is the only way to jump from secure to non-secure context. To learn more look
inside file main.h in the secure project. It contains the following lines:

define CMSE_NS_CALL __attribute((cmse_nonsecure_call)) /* Function pointer declaration in
non-secure */
typedef void CMSE_NS_CALL (*funcptr)(void);
typedef funcptr funcptr_NS; /* typedef for non-secure callback functions */

Note: The breakpoint in main is only set for the secure application. Therefore, in order to halt on first line in non-secure
main, the user must set a breakpoint manually.
After performing a Step into operation on main.c:146, or if the user manually sets up a breakpoint in non-secure
main() and presses Continue operation, the execution halts on the first line in non-secure main() as shown in
Figure 16.

Figure 16. Jump made from secure to non-secure

2.2.5 RDP-level 0.5: loading and debugging the non-secure project
In RDP-level 0.5 the debugger is not able to read or write any information related to the secure side.
Consequently, the STM32L5 Series device must already contain a secure image, which initializes the SAU
properly, to be able to debug the non-secure project. Furthermore the non-secure linker script and the SAU setup
must be in sync. The example project used in this application note can be used as reference.
The presentation is the current section assumes that the secure side is already programmed and the RDP-level
Option Byte is set to 0.5.

Debug configuration

To create the debug configuration to load the non-secure image, perform the following steps:
1. Select the non-secure project in [Project Explorer].
2. Right-click [Debug As…] and select [STM32 Cortex-M C/C++ Application].
3. Give the configuration a useful name so that it can be easily identified. In the case illustrated in

Section 2.2.5 , the suffix RDP0.5 is appended.

AN5394
Exploring the example project

AN5394 - Rev 3 page 17/31

https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series.html

4. Move to the Startup tab. Verify that Download and Load symbols are set true for the non-secure project elf
file.

Figure 17. Startup configuration load list for RDP 0.5

Click [OK] to launch the debug configuration. The device performs a reset and the debugger waits for the CPU to
make the jump from the secure to non-secure context before it can halt execution.

Note: In RDP-level 0.5, if the user tries to halt the CPU while it is executing secure code, the halt event is kept pending
until the CPU returns to the non-secure side. If the CPU spends more than two seconds in the secure side, the
halt operation is in timeout.
In the “Debug Configurations” dialog, the “Startup” tab contains a “Max halt timeout(s)” selection, which can be
configured for the debug probe of the ST-LINK GDB server to wait for longer timeout. For both debug probes to
wait for longer timeout, ST-LINK GDB server and OpenOCD, a .gdbinit file needs to be created. This file
must be available in PROJECT_ROOT/.gdbinit and contain the following commands to gdb., where the
values are in seconds and can be changed according to application needs:
• set remotetimeout 50
• set tcp connect-timeout 50

2.2.6 TrustZone® specific extension in Debug perspective and views
Specific features are available in STM32CubeIDE to support STM32 devices with enabled TrustZone®.
At the bottom of the Debug perspective, there is a Security indicator. This indicator shows either the Secure or
Non-Secure status depending on the context in which the application execution is halted, secure or non-secure.
Both states of this indicator are shown in Figure 18.

Figure 18. Security indicator

The Registers view is extended to display the banked secure and non-secure registers. These registers are
suffixed by _S for secure and _NS for non-secure registers.

AN5394
Exploring the example project

AN5394 - Rev 3 page 18/31

Figure 19. Banked secure and non-secure registers

The SFRs view shows the the content of file CMSIS-SVD. For each peripheral that can be shared between secure
and non-secure context, this file contains both the non-secure and secure memory address.

AN5394
Exploring the example project

AN5394 - Rev 3 page 19/31

Figure 20. SFRs view showing peripherals with both secure and non-secure address spaces

The Fault Analyzer view is also updated. It shows the new exception types applicable to the STM32L5 devices
and calculates the exception stack frame based on fault conditions and FPU usage.

2.3 Create an empty project with TrustZone® enabled

This chapter assumes that the reader is familiar with Section 2.1 Importing the TrustZone project template for
STM32CubeIDE and knows about Option Bytes, memory partitioning, building, and debugging.
To start a new project, go to [File]>[New]>[STM32 project].

Figure 21. New empty project creation

AN5394
Create an empty project with TrustZone® enabled

AN5394 - Rev 3 page 20/31

Select the MCU or board. In this example, an STM32L552E-EV Evaluation board is selected. Click [Next].

Figure 22. Target selection

AN5394
Create an empty project with TrustZone® enabled

AN5394 - Rev 3 page 21/31

After selecting an MCU or board, the next step is the Project Setup step.

Figure 23. Project setup - Select Empty

• Name the project.
• Make sure that Enable TrustZone under Targeted Device Usage is checked.

This guarantees that the project is generated as three projects in a hierarchical structure instead of a single
flat project. The root project has no CDT nature and therefore is not aware of concepts such as build
configurations or debug configurations. The root project is just a container for the two target projects that
permits sharing some common code between the two MCU projects.
– The first MCU project is related to the non-secure part of the application. In that sense it resembles a

legacy STM32 project.
– The second sub-project is related to the secure part of the application. This project configures the

compiler to build with the -mcmse flag and the linker to produce an object file for the non-secure
callable functions.

If Enable Trust Zone is not checked, the STM32L5 works like any other single-core STM32 microprocessor
from a security standpoint. This is not the main use case, and hence not documented in this application
note.

• Targeted Project Type: Select Empty. This results in an empty project skeleton, which can be manually
populated with files.

AN5394
Create an empty project with TrustZone® enabled

AN5394 - Rev 3 page 22/31

Note: 1. The “Enable TrustZone” selection is irreversible. It leads to either one flat project structure with TrustZone®

disabled, or one hierarchical project structure with TrustZone® enabled. There is no way to switch between
the two project structures once the projects are created.

2. Enabling TrustZone® in the project wizard does not enable Option Byte TZEN, which must also be set using
STM32CubeProgrammer.

After, naming the project, checking Enable Trust Zone, and setting Targeted Project Type to Empty, click on
[Finish]. The empty project structure is created as illustrated in Figure 24.

Figure 24. Empty project structure

One root project contains two sub-projects. Only the two MCU sub-projects can be built and debugged. The root
project is only a container. The secure main() function must be updated with code to call the non-secure
application. How this is done can be studied in the secure template project, in other secure firmware example
projects, or by creating an STM32CubeMX project with TrustZone® enabled.
How to debug these projects is described in Section 2.2.4 RDP-level 0: loading and debugging both secure and
non-secure projects or Section 2.2.5 RDP-level 0.5: loading and debugging the non-secure project.

2.4 Create an STM32CubeMX project with TrustZone® enabled

Perform the same steps as for the empty project in Section 2.3 Create an empty project with TrustZone enabled
in order to create a project with an .ioc file where resources are controlled by STM32CubeMX. Remember to
check the Enable Trust Zone checkbox and set the Targeted Project Type to STM32Cube.

AN5394
Create an STM32CubeMX project with TrustZone® enabled

AN5394 - Rev 3 page 23/31

Figure 25. Project setup - Select STM32Cube

[File]>[New STM32 Project]>[Project Setup] page which is the second step in the project wizards.
Figure 26 shows a screenshot of the STM32L5 project generated by STM32CubeMX integrated in
STM32CubeIDE.

Figure 26. Generated project from STM32CubeMX

The Drivers folder containing CMSIS and HAL code is stored in the root project and links are created to its code
in order to build the code in the two MCU projects.
How to debug these projects is described in Section 2.2.4 RDP-level 0: loading and debugging both secure and
non-secure projects or Section 2.2.5 RDP-level 0.5: loading and debugging the non-secure project.

AN5394
Create an STM32CubeMX project with TrustZone® enabled

AN5394 - Rev 3 page 24/31

3 Making calls from the non-secure to the secure domain

This section illustrates how to make a function call from the non-secure application to the secure application. This
is done using GCC pragmas and a glue layer called the non-secure callable, abbreviated as NSC.
In order to make a call from a non-secure function to a secure function, the secure function must be defined with
__attribute((cmse_nonsecure_entry)) as shown in the example below:

uint32_t __attribute((cmse_nonsecure_entry)) getSecureKey(void)
{
 return 0xdeadbeef;
}

Important: The function prototype in the corresponding header file must not use the uint32_t
__attribute((cmse_nonsecure_entry)).

To quickly try this example:
• Copy-paste the code snippet above into the secure application main.c. Place the snippet inside the USER

CODE BEGIN PV Begin/End section or similar.
• In the root project, open the Secure_nsclib/secure_nsc.h header file. Add the following line into secu

re_nsc.h:

uint32_t getSecureKey(void);

This header file is a convenient example since it is included by both the secure and non-secure projects.
• Add a call in non-Secure main.c:

int temp = getSecureKey();
• Build the non-secure project. This triggers the build of the secure project.

The build of the secure project results in secure_nsclib.o, which is linked by the non-secure application
to allow non-secure-to-secure transaction.

• Place a breakpoint on the line containing int temp = getSecureKey();
• When reaching the breakpoint, enable the instruction stepping mode. Use step into.

– A veneer function, _getSecureKey_veneer, is generated in the non-secure code to handle the long
jump between non-secure and secure memory addresses. This is not security related but the result of
a long jump.

– The next step consists in executing the sg (secure gateway) instruction in the secure memory, which
authorizes non-secure-to-secure transactions.

– After the authorization, the execution branches to the getSecureKey() function in the secure
memory.

– It is possible that this function calls another secure function that is not a non-secure callable.
◦ In RDP-level 0, instruction stepping can be continued also in this function.
◦ In RDP-level 0.5, stepping in secure application is not allowed.

– In the prologue of getSecureKey(), all relevant registers are cleaned from the secure-side leaking
information into the non-secure side.

– When the non-secure call is finished, execution returns to the non-secure side.

AN5394
Making calls from the non-secure to the secure domain

AN5394 - Rev 3 page 25/31

4 FAQs

4.1 The debugger crashes after loading the non-secure and secure images in RDP0

Answer #1

Double-check that the secure image is at the bottom of the load list table in the debug configuration. The last
image in this list is used to setup the Program Counter boot address, which must be in the secure memory. Refer
to Section 2.2.4 RDP-level 0: loading and debugging both secure and non-secure projects.

Answer #2

In RDP-level 0.5, the debugger times out if the application spends more than two seconds in the secure context.
Try extending the timeout as described below.
In the “Debug Configurations” dialog, the “Startup” tab contains a “Max halt timeout(s)” selection, which can be
configured for the debug probe of the ST-LINK GDB server to wait for longer timeout. For both debug probes to
wait for longer timeout, ST-LINK GDB server and OpenOCD, a .gdbinit file needs to be created. The GDB
client also must be instructed to use longer timeout values, which is done by creating a file in the project root
folder named .gdbinit. This file must contain two lines:
• set remotetimeout 50
• set tcp connect-timeout 50
Refer to Section 2.2.5 RDP-level 0.5: loading and debugging the non-secure project.

4.2 I get secure GTZC interrupt at various times during debug

The application jumps to the GTZC interrupt routine if any of the GTZC/TZIC illegal access flags are raised and
corresponding interrupt is enabled. The GTZC/TZIC illegal access flags can be raised because the debugger (ST-
LINK GDB server or OpenOCD) tries to access non-secure memory addresses before the SAU is properly
initialized.
For example, the following features of STM32CubeIDE and other IDEs trigger memory reads:
• Setting a breakpoint on a memory address triggers a read on this address.
• Having a Memory Browser, Expressions or any other view that reads data from memory, triggers reads on

halt events or other non-transparent IDE events.

Possible workarounds are:
• Do not enable GTZC interrupt on debug builds.
• Clear the necessary GTZC/TZIC illegal access flags after SAU initialization before enabling the GTZC

interrupt.

AN5394
FAQs

AN5394 - Rev 3 page 26/31

Revision history

Table 1. Document revision history

Date Version Changes

9-Jan-2020 1 Initial release.

12-Feb-2020 2 Updated Section 4.2 I get secure GTZC interrupt at various times during
debug.

23-Jul-2020 3

Extended the description to the debug using OpenOCD in RDP-level 0:
loading and debugging both secure and non-secure projects, RDP-level 0.5:
loading and debugging the non-secure project and The debugger crashes
after loading the non-secure and secure images in RDP0.

AN5394

AN5394 - Rev 3 page 27/31

Contents

1 General information .2

1.1 Prerequisites . 2

1.2 The use cases in this document . 2

1.3 Option Bytes . 3

1.4 Specific hierarchical project structure for secure and multi-core MCUs 3

2 Creating and importing projects .5

2.1 Importing the TrustZone® project template for STM32CubeIDE . 5

2.2 Exploring the example project . 7

2.2.1 Option Bytes . 7

2.2.2 Explore the linker script, memory partitioning, and SAU initialization. 8

2.2.3 TrustZone®-related build settings . 8

2.2.4 RDP-level 0: loading and debugging both secure and non-secure projects. 11

2.2.5 RDP-level 0.5: loading and debugging the non-secure project . 17

2.2.6 TrustZone® specific extension in Debug perspective and views . 18

2.3 Create an empty project with TrustZone® enabled . 20

2.4 Create an STM32CubeMX project with TrustZone® enabled . 23

3 Making calls from the non-secure to the secure domain .25

4 FAQs .26

4.1 The debugger crashes after loading the non-secure and secure images in RDP0. 26

4.2 I get secure GTZC interrupt at various times during debug . 26

Revision history .27

Contents .28

List of tables .29

List of figures. .30

AN5394
Contents

AN5394 - Rev 3 page 28/31

List of tables
Table 1. Document revision history . 27

AN5394
List of tables

AN5394 - Rev 3 page 29/31

List of figures
Figure 1. STM32L5 project with hierarchical project structure . 3
Figure 2. Changing the visual representation between flat and hierarchical project structure . 4
Figure 3. Root project with .project file . 4
Figure 4. Import project template . 5
Figure 5. Selection of the STM32L552E-EV template project . 6
Figure 6. Building the imported template project . 7
Figure 7. STM32L5 secure project: compiler call. 9
Figure 8. STM32L5 secure project: linker configuration . 10
Figure 9. STM32L5 non-secure project: linker configuration . 10
Figure 10. Debugger tab with ST-LINK GDB server selection . 12
Figure 11. Debugger tab with OpenOCD selection . 13
Figure 12. Add binary and symbol loads to non-secure project . 14
Figure 13. Startup configuration load list . 15
Figure 14. Debugger halted on secure main function . 16
Figure 15. Initialization of the secure to non-secure jump. 16
Figure 16. Jump made from secure to non-secure . 17
Figure 17. Startup configuration load list for RDP 0.5 . 18
Figure 18. Security indicator . 18
Figure 19. Banked secure and non-secure registers . 19
Figure 20. SFRs view showing peripherals with both secure and non-secure address spaces . 20
Figure 21. New empty project creation . 20
Figure 22. Target selection . 21
Figure 23. Project setup - Select Empty . 22
Figure 24. Empty project structure . 23
Figure 25. Project setup - Select STM32Cube . 24
Figure 26. Generated project from STM32CubeMX . 24

AN5394
List of figures

AN5394 - Rev 3 page 30/31

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

AN5394

AN5394 - Rev 3 page 31/31

http://www.st.com/trademarks

	Introduction
	1 General information
	1.1 Prerequisites
	1.2 The use cases in this document
	1.3 Option Bytes
	1.4 Specific hierarchical project structure for secure and multi-core MCUs

	2 Creating and importing projects
	2.1 Importing the TrustZone(R) project template for STM32CubeIDE
	2.2 Exploring the example project
	2.2.1 Option Bytes
	2.2.2 Explore the linker script, memory partitioning, and SAU initialization
	2.2.3 TrustZone(R)-related build settings
	2.2.4 RDP-level 0: loading and debugging both secure and non-secure projects
	2.2.5 RDP-level 0.5: loading and debugging the non-secure project
	2.2.6 TrustZone(R) specific extension in Debug perspective and views

	2.3 Create an empty project with TrustZone(R) enabled
	2.4 Create an STM32CubeMX project with TrustZone(R) enabled

	3 Making calls from the non-secure to the secure domain
	4 FAQs
	4.1 The debugger crashes after loading the non-secure and secure images in RDP0
	4.2 I get secure GTZC interrupt at various times during debug

	Revision history
	Contents
	List of tables
	List of figures

